
“Unpacking the music genre recognition project from the
TinyML Cookbook, second edition!”

Gian Marco Iodice –Tech Lead in the Machine Learning Group, Arm

February 13, 2024

Thank you, tinyML Strategic Partners,
for committing to take tinyML to the next Level, together

Executive Strategic Partners

57

1

Making Edge AI A Reality

Accelerate Your Edge Compute

www.syntiant.com

http://www.syntiant.com/

Platinum Strategic Partners

60

tinyML® Trailblazers
Ultra-low power machine learning at the edge success stories

DEPLOY VISION AI
AT THE EDGE AT SCALE

Gold Strategic Partners

63

tinyML® Trailblazers
Ultra-low power machine learning at the edge success stories

The Leading Development
Platform for Edge ML

edgeimpulse.com

NEUROMORPHIC
INTELLIGENCE FOR THE

SENSOR-EDGE

www.innatera.com

www.st.com/ai

STMicroelectronics provides extensive
solutions to make tiny
Machine Learning easy

© 2022 Synaptics Incorporated 70

ENGINEERING
EXCEPTIONAL
EXPERIENCES
We engineer exceptional experiences
for consumers in the home, at work,
in the car, or on the go.

www.synaptics.com

Silver Strategic Partners

Join Growing tinyML Communities:

bb

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

The tinyML Community
https://www.linkedin.com/groups/13694488/

19.3k members in
49 Groups in 41 Countries

4.2k members
&

14.5k followers

https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/
https://www.linkedin.com/groups/13694488/

Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)

www.youtube.com/tinyML

11.6k subscribers, 660 videos with 426k views

http://www.youtube.com/tinyML

tinyML Summit
April 22 - 24, 2024 - Register now!

tinyML Awards 2024

7

https://www.wevolver.com/article/2023-edge-ai-technology-report

https://www.wevolver.com/article/2023-edge-ai-technology-report

Reminders

youtube.com/tinyml

Slides & Videos will be posted
tomorrow

tinyml.org/forums

Please use the Q&A window for your
questions

Gian Marco Iodice
Gian Marco Iodice is an experienced edge and mobile computing specialist at
Arm for machine learning (ML). He is also chair of the global meetups for the
tinyML foundation since 2022.

He received the MSc with honors in electronic engineering from the University of
Pisa (Italy), where he specialized in HW/SW co-design for embedded systems.

Within Arm, he leads the engineering developments for Generative AI and the
Arm Compute Library, which he co-created in 2017 to run ML workloads as
efficiently as possible on Arm Cortex-A CPUs and Arm Mali GPUs.

In 2023, he collaborated with the University of Cambridge to integrate ML
functionalities on an Arm Cortex-M microcontroller powered by algae.

Still, in 2023, Gian Marco contributed to developing the EdTech for Good
Curation Framework. This framework, developed by UNICEF in collaboration with
Arm and the Asian Development Bank (ADB), represents a significant step
forward in the responsible use of technology in education.

TinyML
Cookbook, 2Ed and 6!

TinyML
Cookbook, 2Ed

Thank you all!

TinyML
Cookbook, 2Ed The second edition: an incremental edition

Introduction to tinyML

Embedded programming basics

Project with temperature and humidity

2 x projects with audio sensor

2 x projects with vision sensor

1 x projects with inertial sensor

Tips for building tiny models

1x project on a microNPU with TVM

On-device learning & scikit-learn

Weather station with TensorFlow

12 chapters

Keyword spotting with Edge Impulse and Music Genre
Recognition with TensorFlow

Object detection with Edge Impulse and image
classification with TensorFlow

Gesture-based interface

Cifar-10 using less than 64 KB of RAM

Cifar-10 on the Arm Ethos-u55 uNPU

Backpropagation on microcontrollers and scikit-learn
deployment

A chapters for those new to embedded programming

Intro to tinyML concepts (ML, microcontroller, power,..)

TinyML
Cookbook, 2Ed On three different microcontrollers

Arduino Nano 33 BLE Sense Raspberry Pi Pico SparkFun Redboard Artemis Nano

TinyML
Cookbook, 2Ed Where I can find the code...on GitHub!

https://github.com/PacktPublishing/TinyML-Cookbook_2E

Each chapter has its own
folder.

Each chapter contains a
summary of the project

Each chapter contains
the shopping list and

direct links to the source
code and notebooks

TinyML
Cookbook, 2Ed Learning experience point in the TinyML

Cookbook
Difficulty

Chapter1 2 3 4 5 6 7 8 9 10 11 12

You are here!

TinyML
Cookbook, 2Ed What you will learn in the book
Chapter 5
1. How to connect an external microphone to the microcontroller (Raspberry Pi Pico)
2. How to record audio samples with the microcontroller
3. How to upload audio samples to Google Drive
4. How to build a dataset for music genre recognition
5. How to extract the Mel Frequency Cepstral Coefficients (MFCCs) with TensorFlow
Chapter 6
1. How to use the CMSIS-DSP library in Python
2. How to implement the MFCCs algorithm with fixed-point arithmetic
3. How to design and train an LSTM RNN
4. How to evaluate the accuracy of the quantized model
5. How to implement the MFCCs algorithm in C using the CMSIS-DSP library
6. How to implement an app on the microcontroller to recognize three music genres (disco, jazz, and

metal)

TinyML
Cookbook, 2Ed What you will learn in the book
Chapter 5
1. How to connect an external microphone to the microcontroller (Raspberry Pi Pico)
2. How to record audio samples with the microcontroller
3. How to upload audio samples to Google Drive
4. How to build a dataset for music genre recognition
5. How to extract the Mel Frequency Cepstral Coefficients (MFCCs) with TensorFlow
Chapter 6
1. How to use the CMSIS-DSP library in Python
2. How to implement the MFCCs algorithm with fixed-point arithmetic
3. How to design and train an LSTM RNN
4. How to evaluate the accuracy of the quantized model
5. How to implement the MFCCs algorithm in C using the CMSIS-DSP library
6. How to implement an app on the microcontroller to recognize three music genres (disco, jazz, and

metal)

TinyML
Cookbook, 2Ed What you will need

• A Raspberry Pi Pico
• A SparkFun RedBoard Artemis Nano (optional)
• A micro-USB data cable
• A USB-C data cable (optional)
• 1 x electret microphone amplifier
• 1 x half-size solderless breadboard
• 6 x jumper wires
• A laptop/PC with either Linux, macOS, or Windows
• A Google Drive account

TinyML
Cookbook, 2Ed Why this project?…everything started 12 years

ago…

Personal project to build an MP3 player from
scratch in C on an Arm Cortex-M3 microcontroller
(STM32F1x)
• Program memory: 512 KBytes
• SRAM: 64 Kbytes
• Songs stored on SD card
• Responsive touchscreen user interface (UI)
• Everything runs on the Arm Cortex-M CPU without

O.S.
• No auto-equalization based on the music genre

At that time, there
weren’t SW libraries for

the UI!

L

https://www.youtube.com/watch?v=LXm6-LuMmUU

TinyML
Cookbook, 2Ed

the program memory

All the software algorithms have been accelerated on the Arm Cortex-M CPU. The tricks were:
• Perform the computation only when strictly necessary
• Pre-compute portion of the computation ahead of time and store these values in

Algorithms for sophisticated UI with screen overlay and anti-aliasing effects are generally very
computationally expensive.

From this project, I learned some of the software optimizations we will discuss today for the MFCCs feature
extraction.

Therefore, how can the interface be so
responsive?

The User Interface

TinyML
Cookbook, 2Ed

Design Model
TensorFlow

Train
TensorFlow

Model quantization
TensorFlow Lite

(TFL)

Microcontroller

Training dataset

Application development
TFL for Microcontrollers

Convert to C-byte array
ML space

Embedded space

Architecture Model

Quantized
model

Quantized model as
C array

The simple view of tinyML

TinyML
Cookbook, 2Ed

Design Model
TensorFlow Train

TensorFlow

Model quantization
TensorFlow Lite

(TFL)

Microcontroller

Training dataset

Model
development
TensorFlow

Lite

Convert to C-byte array
ML space

Embedded space

Architecture

Model Quantized
model

Quantized model as
C array

The complex view of tinyML

Design Feature
extractor (Python)

Data collection

Implement
feature

extractor (C)

TinyML
Cookbook, 2Ed The additional ingredients

• Collect data samples with the target device to improve the robustness of
the trained model in a real scenario

• Select the suitable ML input data for the target device
• Implement a feature extractor in Python suitable for the target device
• Implement a feature extractor in C that numerically matches what is

implemented in Python

TinyML
Cookbook, 2Ed

Data Collection

TinyML
Cookbook, 2Ed Connecting the microphone to the Raspberry Pi

Pico 1of2
• Our application requires a microphone to record songs and classify their music genre.

• Since the Raspberry Pi Pico does not have a built-in microphone, we need to employ an
external one and figure out the appropriate way to connect it to the microcontroller.

• We have opted for an electret microphone with the MAX9814 amplifier.

• This microphone was also chosen to demonstrate how to sample signals with the ADC
peripheral.

TinyML
Cookbook, 2Ed Connecting the microphone to the Raspberry Pi

Pico 2of2

Step 1 Step 2

TinyML
Cookbook, 2Ed Uploading audio clips to Google Drive

• Implemented an Arduino sketch to sample the audio signal with ADC and transmit the samples
over the serial.

• Implement a Python script to acquire the audio samples transmitted over the serial, create the
audio file, and upload it into Google Drive for access in the Colab notebook.

• The audio clips are recorded every time the user presses the push-button connected to the
Raspberry Pi Pico.

TinyML
Cookbook, 2Ed

Preparing the Dataset

TinyML
Cookbook, 2Ed Preparing the dataset for music genre

recognition

GTZAN +
Audio clips

recorded with
the Raspberry Pi

Pico

Dataset

• GTZAN has 10 music genres: blues, classical, country, disco, hip hop, jazz, metal, pop, reggae,
and rock

• Each genre has 100 audio clips that are 30 seconds long
• Each audio clip has the following:

• 22050 Hz sample rate
• 16 bit integer samples
• Mono channel

At least 10 audio clips of 4
seconds long

TinyML
Cookbook, 2Ed Choosing the suitable model input length

• Given that the Raspberry Pi Pico has 264 KB of SRAM, it is impractical to consider both 30-
second and 4-second audio inputs. In fact, the former requires over 1 MByte of memory, while
the latter would demand 176.4 KB.

• As a result, we considered audio clips of 1 second long. This choice will help reduce the
memory required to 44.1 KB

• The 1-second audio clips have been extracted from the GTZAN, and audio clips recorded with
the microphone

… …

30 seconds 4 seconds

1 second1 second

G
TZ

AN
 c

lip
s

Ra
sp

be
rr

y
Pi

 P
ic

o
cl

ip
s

TinyML
Cookbook, 2Ed Is 1-sec model input length enough?

• Recognizing the music genre from just 1 second of audio can be challenging.
• However, we can analyze multiple chunks of a song to classify its genre.

Song

ML inference Disco

Disco

Metal

Metal

Disco

Split the song into
1 second chunks

ML inference

ML inference

ML inference

ML inference

… …

1 second

Disco

TinyML
Cookbook, 2Ed

Feature Extraction

TinyML
Cookbook, 2Ed Extracting MFCCs 1of3

• Many acoustic models rely on hand-crafted engineering input features to achieve high accuracy
and keep the ML model small.

• Mel Frequency Cepstral Coefficients (MFCCs) are extensively utilized in audio applications and
have demonstrated remarkable success in various use cases, including music genre
classification.

ML modelExtract MFCCs

1 second audio clip Music Genre
(Disco, Jazz, or Metal)

TinyML
Cookbook, 2Ed Extracting MFCCs 2of3

TinyML
Cookbook, 2Ed Extracting MFCCs 3of3

The extracted features by MFCCs depend on some hyperparameters, which are:

• Frame length: This is the duration of each frame extracted from the audio signal.
• Frame step: This is the distance between two consecutive frames
• FFT length: This is the number of samples used in the FFT to compute the spectrum. Typically, the

FFT length is the same as the frame length.
• Mel-spectrogram attributes: These are the necessary attributes to compute the Mel-

spectrogram, such as the minimum and maximum frequency to represent and the number of
output Mel frequencies.

• Number of MFCCs to extract: This is the number of Discrete Cosine Transform coefficients to
keep.

To determine the appropriate value for the hyperparameters, we need to get
familiar with all the operations performed by MFCCs.

TinyML
Cookbook, 2Ed Applying the Hann Window

• Filter applied in the time domain to minimize the spectral leakage with the Fourier Transform.
• To apply this filter, we multiply the input frame element-wise with the Hann window coefficients:

Number of
total samples
in 1-sec audio

clip

Index of the
sample

• Quite expensive computation, isn’t it?
• However, the Hann coefficients can be precomputed…let’s keep it in mind it ;)

TinyML
Cookbook, 2Ed Calculating the FFT

• The FFT is used to bring the signal into the frequency domain

• The distance between two consecutive frequencies is the frequency resolution, depending on the
input frame length.

• The shorter the frame length, the lower the frequency resolution. For applications like ours, where
fine-grained spectral details are crucial to capture harmonics and pitch, frame lengths ranging
from 90 ms to 100 ms are generally needed.

The FFT on a real signal produces negative
frequencies symmetric to the positive ones

TinyML
Cookbook, 2Ed Calculating the FFT magnitude

• The magnitude of the FFT conveys information about energy distribution and tells us the
relevance of each frequency component

TinyML
Cookbook, 2Ed The Mel scale conversion 1of2

• The Mel frequency scale is a type of compression technique.
• Inspired by how the human auditory system perceives the frequencies, the Mel scale was

introduced to apply a logarithmic transformation to the FFT frequencies.
• To apply this frequency conversion, we must first define the following:

• Fmin: This is the lower frequency of the Mel scale.
• Fmax: This is the higher frequency of the Mel scale.
• Number of Mel frequencies: This is the number of evenly spaced frequencies between

Fmin and Fmax on the Mel scale.

Due to the logarithmic nature of this conversion, we can use fewer Mel
frequencies than FFT frequencies because many lower Mel frequencies correspond

to the same Hz frequency.

TinyML
Cookbook, 2Ed The Mel scale conversion 2of2

TinyML
Cookbook, 2Ed How to apply the Mel scale conversion 1of2
• The magnitude of each Mel frequency is obtained by applying a set of triangular filters (filter

banks) in the Hz scale to capture the relevant FFT magnitudes that contribute to it.

• Be equally spaced on the Mel scale
• Have the apex of the triangle on each Mel

frequency
• Have the two neighboring Mel frequencies

that are adjacent to the center frequency
of the filter as the vertices of the triangle’s
base

These triangular filters are for each Mel
frequency and have been designed to:

TinyML
Cookbook, 2Ed How to apply the Mel scale conversion 2of2
• The filter aims to assign a weight (Mel-weight) to each FFT frequency.
• The triangle’s apex corresponds to the highest Mel-weight, set to 1.
• The base vertices of the triangle correspond to the lowest Mel-weight, set to 0.

It is constant and
can be

precomputed!

TinyML
Cookbook, 2Ed Computing the DCT coefficients
• MFCCs are the first few DCT coefficients that describe the spectrum’s shape.
• The first DCT coefficient reflects the average power in the spectrum.
• The higher-order coefficients provide more detailed spectral information, such as the pitch

It is constant and
can be

precomputed!

TinyML
Cookbook, 2Ed MFCCs: TensorFlow Vs Librosa 1of2
• For this project, we extracted the MFCCs features using TensorFlow.
• However, TensorFlow is not the only option to extract MFCCs from a signal. For example, we can

use Librosa
• In the GitHub repository, we have included the code to demonstrate how to extract the MFCCs

with Librosa.
• However, the resulting MFCCs obtained with Librosa differ from the ones obtained with

TensorFlow due to their different underlying implementations.

TensorFlow Librosa

TinyML
Cookbook, 2Ed MFCCs: TensorFlow Vs Librosa 2of2

Although we might have various Python libraries for extracting MFCCs features, we
might have different options when deploying the model on the microcontroller.

Therefore, always consider how to leverage the computation on the target device
because the same algorithm implemented in Python should be deployed on the

microcontroller to avoid accuracy loss.

TinyML
Cookbook, 2Ed

Optimize the Feature
Extraction for the target

device

TinyML
Cookbook, 2Ed Implement MFCCs with fixed-point arithmetic

Interesting idea…but how can we do it in Python and C?

• The TensorFlow implementation of the MFCCs feature extraction is done in floating-point.

• However, this data format is computationally inefficient for the Raspberry Pi Pico because it does
not have floating-point hardware acceleration as many other microcontrollers.

• Therefore, the idea is to accelerate the blocks of the MFCCs using fixed-point arithmetic (Q15)
with integer data types.

• These blocks are element-wise multiplication, FFT, Complex magnitude, and vector-by-matrix.

TinyML
Cookbook, 2Ed The CMSIS-DSP Python library
• For Arm-based microcontrollers, such as the Raspberry Pi Pico, implementing an algorithm can be

made simple and efficient using the C functions available in the CMSIS-DSP library
(https://github.com/ARM-software/CMSIS-DSP)

• This library provides optimized functions for various applications and Arm Cortex-M CPUs.

• Some examples of these routines include math functions, matrix functions, and domain
transformation (like FFT) functions. Therefore, exactly what we need!

• The CMSIS-DSP library is available in C and as a Python library, enabling us to test and develop an
algorithm in a Python environment that closely resembles the final implementation on the
microcontroller.

In the book, there is a detailed explanation of fixed-point arithmetic and the
MFCCs implementation.

https://github.com/ARM-software/CMSIS-DSP

TinyML
Cookbook, 2Ed CMSIS-DSP Example

#include <arm_math.h>

for(int i = 0; i < NUM_FRAMES; ++i) {

….

// Apply the Hann Window.
arm_mult_q15((q15_t*)&src[i*FRAME_STEP],

(q15_t*)hann_lut_q15_data,

_bufA, FRAME_LENGTH);

// Apply the RFFT.
arm_rfft_instance_q15 _rfft_inst;
arm_rfft_init_q15(&_rfft_inst, FFT_LENGTH, 0, 1);

arm_rfft_q15(&_rfft_inst, _bufA, _bufB);

import cmsidsp

for i in range(NUM_FRAMES):

….

Apply the Hann Window.
hann_q15 = dsp.arm_mult_q15(frame_q15, hann_lut_q15)

Apply the RFFT.
inst = dsp.arm_rfft_instance_q15()
stat = dsp.arm_rfft_init_q15(inst, FFT_LENGTH, 0, 1)
fft_q = dsp.arm_rfft_q15(hann_q15)

Python C

TinyML
Cookbook, 2Ed The implementation 1of2

Hann Window FFT Magnitude Mel-scale Log DCT

Element-wise
multiplication

FFT Complex
magnitude Vector-by-matrix Look-up table Vector-by-matrix

Hann coefficients Mel weights DCT weightsQ15 Log values

MFCCs

Pre-computed values

TinyML
Cookbook, 2Ed The implementation 2of2
• The pre-computed values are stored in Flash (153 Kbytes, 8% of total program memory available)

• Even if the Q15 implementation does not match the floating-point implementation numerically, it
is not an issue, as the network will be trained on the Q15 MFCCs.

• By implementing the feature extraction in Python that numerically matches what will be
employed on the target device, we minimize the risk of accuracy drop when deploying the model

TinyML
Cookbook, 2Ed

The remaining part of
Chapter 6

TinyML
Cookbook, 2Ed The other recipes of Chapter 6
• Designed and trained an LSTM RNN (many-to-one)

• Quantized the model to Int8 using the TensorFlow Lite Converter

• Evaluated the accuracy of the quantized model on the test dataset

• Implemented the MFCCs feature extraction in C in the Arduino IDE

• Built an application to recognize music genres (disco, jazz, and metal)

Total trainable parameters: ~15K
Accuracy (Float): 90%
Loss (Float): 0.09%

Model size: 23.5 KBytes
Accuracy (Quantized): 90%

TinyML
Cookbook, 2Ed The Arduino tflite-micro library
• Unfortunately, an official pre-built Arduino tflite-micro library that supports all Arduino

microcontrollers, including the Arduino Nano 33 BLE Sense, Raspberry Pi Pico, and the SparkFun
RedBoard Artemis Nano, is not available.

• As a solution, we have included a pre-built tflite-micro Arduino library on GitHub, designed to
work on any Arduino-compatible platform with an Arm Cortex-M CPU.

• The library derived from the Arduino tflite-micro library for the Arduino Nano 33 BLE Sense (credit
to Pete Warden!)

• For those eager to know the necessary modifications to apply to the original Arduino tflite-micro
library to achieve compatibility with all Arduino-compatible platforms, we have included a Colab
notebook on GitHub.

TinyML
Cookbook, 2Ed Conclusion

• TinyML is a unique technology where hardware and software must
know each other at best.

• Although these devices look “tiny,” they offer enough computational
power and memory for many real-world use cases.

• The best friend of tinyML is the open-source community. If this
technology is where it is now, it is because of the contributions of
many developers worldwide.

Copyright Notice
This multimedia file is copyright © 2024 by tinyML
Foundation. All rights reserved. It may not be duplicated
or distributed in any form without prior written approval.

tinyML® is a registered trademark of the tinyML
Foundation.

www.tinyml.org

Copyright Notice
This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the
opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does
not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the
authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding
the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org

