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Advancing Al
research to make
efficient Al ubiquitous

Power efficiency Personalization Efficient learning

Model design, Continuous learning, Robust learning
compression, quantization, contextual, always-on, through minimal data,
algorithms, efficient privacy-preserved, unsupervised learning,
hardware, software tool distributed learning on-device learning

A platform to scale Al
across the industry

Qualcomm Al Research is an initiative of Qualcomm Technologies, Inc.
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Renesas is enabling the next generation of Al-powered solutions
that will revolutionize every industry sector.
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Join Growing tinyML Communities:

18.9k members in
49 Groups in 41 Countries

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

4.2k members

&
14.5k followers

OftsEn

The tinyML Community
https://www.linkedin.com/groups/13694488/
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tinyML Research Symposium
April 22, 2024
Call for Papers
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1

Research Symposium - April 22, 2024

The tinyML research symposium serves as a flagship venue for related research at the intersection of machine learning applications, algorithms, software,
and hardware in deeply embedded machine learning systems.

Call for Papers
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Hadjer Benmeziane

Dr. Hadjer Benmeziane is a visiting researcher at IBM
Research Europe, specializing in hardware-aware neural
architecture search for emerging Al accelerators such as
analog in-memory computing. She received her PhD from
Université Polytechnique des Hauts-de-France in August
2023, following her Master's and Engineering degree in
Computer Science from Ecole Supérieure d'Informatique,
Algiers, Algeria. Her work on Analog Neural Architecture
Search received the prestigious IEEE open source science
award and best paper award at IEEE Services Computing
2023 Symposium. Her research focuses on making
hardware-aware neural architecture search more efficient,
flexible and practical.
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Context & Motivation

Medical Imaging Segmentation

v/

Medical Tasks on Wearable devices

Post Myocardial Infarction
Hyperacute phase Fully evolved phase

(Isensee, Fabian, et al.2021)

Generative Al for Medical Tasks P
70 \ Ty AR < P capmary | |
SANVIDIA § R . '

(Banerjee, Amit, et al. 2020)

” Zhang, Peng, et al. 2023) 26
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Context & Motivation

: # Name of device or Name of parent Short description FDA Type of FDA  Mention of Date Medical Secondary
. A h I g h n u m b e r Of d e e p algorithm company approval approval algorithm in specialty medical
number announcement specialty
Software analyzing 510(k) 2016
F DA - a rove d 1  Arterys Cardio DL Arterys Inc. cardiovascular images K163253 premarket Deep learning 11 Radiology Cardiology
p p J from MR notification

510(k)

. . 2  EnsoSleep EnsoData, Inc. lj'iagr:jos‘is of sleep K162627 premarket Alutomﬁted 2017 Neurology
e Many are targeting the fields il s v
f Radiol Cardiol d e sio0
O a I O Ogy’ a r I O O gy a n 3 Arterys Oncology DL Arterys Inc. gﬂpepcfilz:tlig:gnostlc K173542 premarket Deep learning ??17 Radiology Oncology
o« . notification
Internal Medicine/General.
4 ldx IDx LLC. z‘i:;;z?h‘y’f S DEN180001 g:tg‘\jv"a‘; Al (2)(1”8 Ophthalmology

e Growing need in automating oo

the design the these ) )
algorithms to enable multi- List of FDA-approved Medical Algorithms
task benefits. (Benjamens, Stan, et al. 2020)
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Context & motivation

* Deep Learning models are more accurate and automate many
radiologist tasks.

1 Urgent need for efficient Al solutions in fast-paced hospital

environments.
1 Current U-net like architectures are slow and large.
1 Other constraints are more critical in medical tasks such as

robustness, certainty, interpretability.
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Background: Deep Learning Architectures
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Background: Hardware-aware Neural Architecture Search
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Medical Imaging Analysis with HW-NAS: MED-NAS-Bench

e The absence of standardized benchmarks for HW-NAS in medical imaging makes it difficult to
compare and validate the effectiveness of different approaches.

e Medical imaging data often requires specialized preprocessing, such as noise reduction or
contrast enhancement, which can influence the effectiveness of the derived architectures.

e Ensuring generalization across diverse patient populations and imaging conditions is
challenging, given the high variability in medical images.

Article | Open Access | Published: 15 July 2022

The Medical Segmentation Decathlon

Heart

MR

(8
@ B
NEE
0

Michela Antonelli &, Annika Reinke, Spyridon Bakas, Keyvan Farahani, Annette Kopp-Schneider, Bennett A.

Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M. Summers, Bram van Ginneken, Michel

Spleen

Bilello, Patrick Bilic, Patrick F. Christ, Richard K. G. Do, Marc J. Gollub, Stephan H. Heckers, Henkjan

Huisman, William R. Jarnagin, Maureen K. McHugo, Sandy Napel, Jennifer S. Golia Pernicka, Kawal Rhode,

Catalina Tobon-Gomez, ... M. Jorge Cardoso ~ + Show authors

g Mystery
tasks

Nature Communications 13, Article number: 4128 (2022) | Cite this article

20k Accesses | 37 Citations | 51 Altmetric | Metrics

32
Antonelli, Michela, et al. "The medical segmentation decathlon." Nature communications 13.1 (2022): 4128.
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Medical Imaging Analysis with HW-NAS: MED-NAS-Bench
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e Weight-sharing methodology is used to estimate
the performance scores.
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1 Antonelli, Michela, et al. "The medical segmentation decathlon." Nature communications 13.1 (2022): 4128.
2 Filice, Ross W., et al. "Crowdsourcing pneumothorax annotations using machine learning annotations on the NIH chest X-ray dataset." Journal of 33

digital imaging 33 (2020): 490-496.
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Medical Imaging Analysis with HW-NAS: MED-NAS-Bench

e We create a supernetwork per task
e Each supernetwork is based on the U-Net architecture
e The supernetwork is created with a recursive implementation of U-Net.

(a) original U-Net Architecture (b) Recursive U-Net Benchmark
-} Segmentation
_input | outpu Head
'maﬂi el et -l "' se;?nfemation
1 4 map
: block2
.|.,. \I.Hl CAY blocks
W )

; -

¥ | %

‘I“‘E - [I""i"i = conv 3x3, RelLU t;:

; t = copy and crop w
l......' _ m § max pool 2x2

>4 1024 | 4 5 # up-conv 2x2 .
e T <4+— Detection Head
: : = conv 1x1
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Medical Imaging Analysis with HW-NAS: MED-NAS-Bench

Multiple blocks are
possible per task.

Each operation is
associated with its
recursive upsampling
option.

We use different 2D and
3D convolutions.

Block Operations Respective Upsampling block
Zero - -

Identity Identitylayer IdentityLayer

A LinearLayer(in, out) LinearLayer(out, in)

B 2DConv(in, out, k=3, use bn=false, act=relu) T2DConv(out, in, k=2, 5s=2)
C 2DConv(in, out, k=3, use bn=true, act=relu) T2DConv(out, in, k=2, 5=2)
D 2DConv(in, out, k=3, use_bn=false, act=leakyrelu) |T2DConv(out, in, k=2, 5=2)
E 2DConv(in, out, k=3, use_bn=true, act=leakyrelu) [T2DConv(out, in, k=2, s=2)
: [B, C] - T2DConv(out, in, k=2, 5=2)
G [D, E] T2DConv(out, in, k=2, 5=2)
H 3DConv(in, out, k=3, use bn=false, act=relu) T3DConv(out, in, k=2, s=2)
| 3DConv(in, out, k=3, use bn=true, act=relu) T3DConv(out, in, k=2, 5=2)
J 3DConv(in, out, k=3, use bn=false, act=leakyrelu) |T3DConv(out, in, k=2, 5=2)
K 3DConv(in, out, k=3, use bn=true, act=leakyrelu) |T3DConv(out, in, k=2, 5=2)
L [H, 1] T3DConv(out, in, k=2, 5=2)
M [, K] T3DConv(out, in, k=2, 5=2)
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Medical Imaging Analysis with HW-NAS: MED-NAS-Bench

Ranking Evaluation
e For each task, 10k architectures were extensively trained to provide evidence that weight-sharing
methodology ranking is accurate.

chest - — . 1.01
spleen 4 }—~—'———'—+ ‘ ’
=
vessels | +——— So.8
colon t 1 } %
pancreas 4 +——— [N E
[+] 4
heart | — . G 0.6
=
prostate —— s
ver = - £ 0.4/
lung 1 . 8
£
1 — .
Pocampus %027 puy Weight-sharing
in ——
o . , . . . . . I Surrogate Model
0.3 0.4 0.5 0.6 0.7 0.8 0.9

o
(=]

Performance Metric brain  hippo- lung liver prostate heart pancreas colon hepatic spleen chest

campus vessels
datasets

Except for lung tumor segmentation, weight-sharing method gave a better approximation of the
ranking with an average of 0.85 kendall tau-b correlation.
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Medical Imaging Analysis with HW-NAS: MED-NAS-Bench

Hardware Efficiency Evaluation

e We deployed each model on two
different hardware devices: Raspberry

(a) Analysis on Raspberry Pi3

chest 1
spleen -
hepatic vessels -

colon 1

——
— -

chest q

spleen 1
hepatic vessels 4
colon 1
pancreas 1
heart 4
prostate q
liver 4

lung 4
hippacampus 1
brain 4

(b) Analysis on Laptop

——
—
pancreas { +——Il—
. heart 1 —i—
P|3 and Laptop- prostate 1
e Except for 10K architectures in each e
task, the latency and energy ‘e =
brain
consumption are estimated using a 0 0 ey
lookup table.
chest4{ —l—
spleen —
hepatic vessels ——
I E
Hardware Processor RAM | Storage | Operating Sys- panzfe:r;- a—.—e'_F
tem heart - il
Raspberry Pi 3 il;d—ccgré‘ ARM Cortex- | 1GB 32G Raspbian prostate ——
liver - —i—
Laptop AMD Ryzen 7 6800H 16GB | 1T Microsoft Win- lung{ — +—EE—
dows 11 hippocampus 1 L
brain - HH
20 40 60

Latency (ms)

chest 4
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hepatic vessels -
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liver -
lung -
hippocampus 1
brain -
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Medical Imaging Analysis with HW-NAS: MED-NAS-Bench

Cross datasets ranking evaluation

Is there a single architecture that can be 5 hey
. . . ":qo ‘3‘(}
used for all medical imaging tasks ? 6r.0m, ©r,

3, Ve
L J Ose. A Mk, Cop CSe B,
iy Pl ifz;g e, f&g-@ oy B Yoy, S@fs €, é@s{;

-] 6 o+ [0 6 o 6 i o
hippocampus —m. 0.5 . 0.3 .. 05 04 0.9
s 58 6 D D o+ D -+ D
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mi wer-o4 5 ) I 96 CEI 1 05 I (> 2
Similar Top 2
- oosre -] ] 05 86 M G5 o+ CEICIEE [ S
Architectures 0.7
[ I o5 E s
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Medical Imaging Analysis with HW-NAS: MED-NAS-Bench

Method Brain Hippocampus Lung Liver Prostate
. . Dice Jec (%) | Dice Jc (%) | Dice Jec (%) | Dice Jc (%) | Dice Je (%)
two-stage differentiable (%) (%) (%) (%) (%)
neural architecture search, U-Net [301] 5754 5132 | 804 7415 | 547 4777 | 7587 6943 | 775  72.05
allowing for simultaneous — U-Net++ [302] 58.98  53.67 | 82.63  75.65 61.3 55.4 78.38 72.4 7897  T1.17
_ _ Att. U-Net [303] 62.4 b7.4 83.24 76.14 65.7 59.54 74.6 70.28 7778 70.74
cell-level a_nd_ ne'IEWOI’k level nnU-Net [308] 61.20  54.68 89.66  85.23 69.2 62.36 84.48 78.89 82.7 78.4
Optlmlzatlon. C2FNAS_O [305] | 61.98 55.76 88.67  82.24 70.44  63.73 83.94 79.3 81.82 74.9
EA 61.56 53.54 85.6 80.21 70.8 64.38 80.9 74.53 74.56  69.87
RS 53.5 47.4 62.45 54.85 56.7 51.21 67.88 61.1 68.4 61.94
—»| MixSearch [304] 65.78 59.65 88.67 83.31 81.3 76.08 | 87.43 82.23 | 86.79 79.79
Evolutlonary Search on two —» | C2FNAS [305] 64.88 54.6 90.54 83.19 79.4 73.12 86.44 80.32 83.56 79.01
. . BiX-NAS [306] 63.87 56.4 89.68  84.07 75.6 68.47 87.12 82.11 81.5 75.61
stages: fine (operation) and

coarse (connections or

Method Heart Pancreas Colon Hepatic Vessels Spleen Chest
tOpOlogy) etho Dice Je (%) | Dice Je (%) | Dice Jc (%) | Dice Je (%) | Dice Je (%) | Fl-score
(%) (%) (%) (%) (%)
U-Net 85.6 79.92 64.56 59.93 54.32 49.53 38.5 30.98 89.54 84.11 95.32

U-Net++ 84.32  77.89 | 63.87  57.03 59.82  53.64 48.93 44.49 88.95 84.6 95.38
Att. U-Net | 85.78 7895 | 64.76  58.41 45.7 37.91 96.73 49.69 90.56  83.66 95.78

A two-phase search includes nnU-Net 92.77 8839 | 659 5847 | 56 5155 | 66.08  59.54 96  91.34 96.8
a differentiable NAS to C2FNAS_ O | 9249 881 | 67.59 60.68 | 589 537 | 6765 6354 | 96.28 89.49 | 96.34
narrow down the search EA 85.76  79.81 | 653  59.64 | 50.8 4323 | 55.78 5107 | 89.76  84.29 | 95.78
RS 753 69.19 | 54.21  46.27 | 46.7  41.22 | 39.76 3541 | 80.56 73.83 | 89.56

space, followed by a novel MixSearch | 89.53 8473 | 6843 632 | 578 521 | 7L65 65.12 | 96.75 9227 | 97.54
progressive evolutionary C2FNAS 94.56 89.24 | 67.82 60.18 | 60.67 53.85 | 6542  57.46 | 97.34 93.16 | 98.68

BiX-NAS 94.32 86.98 | 69.84 63.66 | 57.59  50.23 66.78 61.47 96.76  90.07 96.83

search. |
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Medical Imaging Analysis with HW-NAS: MT-MIAS

Once the supernetwork is trained, we evaluate
each block (layer in this case) from bottom to
top.

e Block Importance Score*

Target HW
l_l_l T 04 u b1 b2 b3 b4
s A I
S =|w( )| S .
l,O l_|_1 - OB b3 T . *
‘ « Compute BIS
. ) i _! highest BIS
Step 1: Supern:twork Training Step 2: BIoYck pruning
Train each supernetwork for Automatically prune the blocks ending with
independent task a single sub-network
* The Pareto front is obtained by relaxing the number of selected blocks
4Redman, William T., et al. "AN OPERATOR THEORETIC VIEW ON PRUNING DEEP NEURAL NETWORKS." 10th 41

International Conference on Learning Representations, ICLR 2022. 2022.
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Medical Imaging Analysis with HW-NAS: MT-MIAS

e General Search Objective

max ;. , ¥ Avg(a(Aoca))/Lat(0o) + 0(Sti0 * We, St.10 * Wo)

o€l \_ AN J J
Y Y Y
Validation accuracy of the HW-awareness Task-generalization ability
operation o in layer | (optional)

enhanced with OIS

- alphais the validation accuracy obtained using weight-sharing
- sigmais the cosine similarity between the weights of the same operation used
in different tasks
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Medical Imaging Analysis with HW-NAS: MT-MIAS

We validate MT-MIAS using three scenarios:

-> MIAS Scenario: Classical HW-NAS
max S; , * Avg(a(Ayca))/Lat(o)

o€l

- MT-MIAS Scenario: Classical HW-NAS + Generalization

i 1,0 % Avg(a(Aoea))/Lat(0) + 0(Sp10% o, S110% )
oc

-> MT-MIAS-C Scenario: Relax the final number of blocks.
The goal is to construct the smallest supernetwork that is completely
deployable, but each sub-network is trained on a different task.
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Medical Imaging Analysis with HW-NAS: MT-MIAS

100
90
S
® 80
-
o
a
(] 70 7]
-
/o
60 -
50 -
brain hippocampus lung liver prostate heart pancreas
_ B MIAS
MIAS generally outperforms all other methodologies MT-MIAS
MT-MIAS induces a performance reduction due to generalization MT-MIAS-C
MT-MIAS-C relaxes the generalization and outperforms other SOTA _
methods B MixSearch
Bl C2FNAS
Bl bixnas
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Medical Imaging Analysis with HW-NAS: MT-MIAS

Method Colon | Hepatic Vessels | Spleen Chest | Hardware
Dice (%) Dice (%) Dice (%) | Fl-score aware
U-Net [301] 04.32 38.5 89.54 05.32 -
U-Net++ [302] 09.82 48.93 88.95 95.38 -
Att. U-Net [303] 45.7 56.73 90.56 95.78 -
nnU-Net [308] o6 66.08 96 96.8 -
C2FNAS [305] 58.9 67.65 96.28 96.34 No
EA 00.8 Hh.78 89.76 95.78 No
RS 46.7 39.76 80.56 89.56 No
MixSearch [304] 57.8 71.65 96.75 97.54 No
C2FNAS [305] 60.67 65.42 97.34 98.68 No
BiX-NAS [306] 57.99 66.78 96.76 96.83 No
MT-MIAS 55.46 60.98 88.56 87.45 Yes
MT-MIAS-C 56.35 60.45 93.61 86.77 Yes
MT-MIAS (T) 63.45 70.54 95.66 93.45 Yes
MT-MIAS-C (T) 64.5 68.7 97.65 98.65 Yes
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Analog In-memory Computing Potential

MU, - - xr a0
_ o X Woo Wo ... Won Y,
e Compute Vector-Matrix multiplication X, Wi W W 5
directly in the memory. x
Xl IWae Winn ... Wan Ya
e Less data movement. e b -k
V_SL, W_SL, V_SL,
o More energy efficient. Vo B¢ : Yo —
BUT! Gap M Gt Goy
e Noise and Drift inherent characteristics Vi B t
e Accuracy drops over time Ry A\ R
e Robust & Noise resilient architectures
; u_ | wirou ~ Grn Gru
; i | % Unit Cell %
oSl SN oo 11’?:\0121139152; ;3; ::a:n«:125(s)
Noise Drift

47
Sebastian, Abu, et al. "Memory devices and applications for in-memory computing." Nature nanotechnology 15.7 (2020): 529-544.
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AnalogNAS: A Neural Network Design Framework for Accurate Inference with
Analog In-Memory Computing (EEE Edge)

Hadjer Benmeziane, Corey Lammie, Irem Boybat, Malte Rasch, Manuel Le Gallo, Hsinyu Tsai, Ramachandran Muralidhar, Smail Niar, OQuarnoughi
Hamza, Vijay Narayanan, Abu Sebastian, Kaoutar El Maghraoui

Evaluate
— —
i sample imi
Resnet-like Search R Optimized Surrogate Models
Space Evolutionary
- _——

robustness, accuracy ??
1. The 1-day accuracy measures the performance of an

1-day accuracy

architecture on a given dataset. 1-day accuracy standard deviation
97.5 1
95.0 -
1. computes o25)
the difference between the 1-month and 1-sec accuracy. 90.0.
87.5 1
1. The 1-day accuracy standard deviation measures the 85.0
o ) | g2.5| — AnalogNAS_T500
variation of the architecture's performance across >] —#— resnet3:
80.0

experiments, FP 1sec 1lhr 1day 10days30days 48
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Analog In-Memory Computing with Uncertainty Quantification
for Efficient Edge-based Medical Imaging Segmentation

Hadjer Benmeziane, Imane Hamzaoui, Zayneb Cherif, Kaoutar El Maghraoui

70

L]
\)

2

We experiments multiple medical segmentation models on different tasks, comparing analog to digital

inference.

Key insights:
% Transformer based models are more robust to noise injection and analog training than pyramidal architectures.
% Due to additional hardware-aware training, analog inference is more reliable and certain, despite the noise.

4

Median number
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Dice Score
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(b) Brain Tumor Segmentation

(c) Spleen Segmentation

(d) Nuclei Segmentation

B Analog Training
B Digital Training

U-Net

U-Net++ Swin UNETR U-Net

U-Net++ Swin UNETR U-Net

U-Net++ Swin UNETR
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Conclusion & Perspectives

- We're proud to present MED-NAS-Bench, a trailblazing benchmark that bridges the gap
between NAS and the intricate world of medical imaging analysis.

The MED-NAS-Bench API represents a significant contribution to the field of medical imaging
research. https://github.com/IHIaadj/med nas bench

-> MT-MIAS encapsulates a methodology that seeks architectures optimized for holistic medical
analysis, ensuring adaptability across diverse medical imaging tasks.
- Analog in-memory computing presents an efficient alternative to medical imaging analysis.

Perspectives:
- Increase the collected objectives and targeted hardware platforms in
MED-NAS-Bench.
- Improve the API access to a sub-network in the benchmark.
- Develop a search process for automatically designing robust and
noise-resilient medical architectures on analog in-memory
computing.
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MED-NAS-Bench

https://github.com/IHIaadj/med nas bench
https://theses.hal.science/tel-04224035v1/file/Benmeziane Hadjer2.pdf
haadjer.benmeziane@gmail.com

ALaMiH K¢ dnversie @ IBM Research

UMR CNRS 8201
HAUTS-DE-FRANCE
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