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The Leading Development
Platform for Edge ML




Qualcomnm
Al research

Advancing Al
research to make
efficient Al ubiquitous

Power efficiency Personalization Efficient learning

Model design, Continuous learning, Robust learning
compression, quantization, contextual, always-on, through minimal data,
algorithms, efficient privacy-preserved, unsupervised learning,
hardware, software tool distributed learning on-device learning

A platform to scale Al
across the industry

Qualcomm Al Research is an initiative of Qualcomm Technologies, Inc.
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Renesas is enabling the next generation of Al-powered solutions
that will revolutionize every industry sector.
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Easily deploy your
tinyML solutions with
Arduino Pro
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Powerlng tinyML Innovatlon

',.,~Arm Al Virtual Tech_

Talks

The latestin Al trends technologles & best
- practices from Arm and our Ecosystem
- :Pa'r‘t-ners.

-Demos, code examples, workshops, panel

. sesslonsand much more' ..

| | FortnlghtIyTuesday @ 4pm GMT/8am PT

Find out more:
- www.arm.com/techtalks -
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STMicroelectronics provides extensive
solutions to make tiny
Machine Learning easy
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Join Growing tinyML Communities:

14.3k members in
47 Groups in 39 Countries

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

4k members

&
11.6k followers

OftsEn

The tinyML Community
https://www.linkedin.com/groups/13694488/
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(including this video)
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Jens Wilhelmsson

Jens Wilhelmsson M.Sc. in Complex Adaptive Systems
from Chalmers University of Technology in Gothenburg,
Sweden. Since 2019, he is working at IVL Swedish
Environmental Research Institute with applying machine
learning within different environmental research projects.
His main interests are computer vision, image processing
and related sensor development.
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A Contact-less Turbidity Sensor ut
Camera and Low Power Neural Network Processing

The Turbinator

SVENSKA

MILJOINSTITUTET

Se

IVL Swedish Environmental Research Institute

lhelmsson@ivl

Jens Wilhelmsson,
jens.wi
2023

04-27
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Agenda

e  About me and the company | work for

e  Whatis turbidity and why measure it?

e  Existing turbidity sensors and its challenges
e  Brief history of the Turbinator

e  How the Turbinator works
* Physical measurements
e The data
* The ML part
e The tiny part
 The communication

e Challenges, limitations and some future ideas
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IVL Swedish Environmental Research Institute

and |

Q@ivl

MILJOINSTITUTET

Independent, non-profit research institute,
owned jointly by the Swedish government
and the business community through a
foundation.

50/50 applied research/consulting within
fields related to the environment.

400 employees.

B.Sc. Engineering physics + M.Sc. Complex

adaptive systems.

Likes to apply Al to new fields where the
impact is large.

Sensor development (mostly proof-of-
concept)

@ivl
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What is turbidity and why measure it?

* Turbidity is a measure of the clarity of * Drinking water quality
water due to the presence of suspended e Environmental monitoring
particles such as sediment, * Wastewater treatment
microorganisms, algae or other pollutants. * Industrial processes

4000 3000 2000 1000 500

https://www.ultra-filter.com/process-filtration/turbidity--ambiguity-of-a-liquid/
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Current techniques for measuring turbidity

Typical turbidity sensor

https://www.campbellsci.ca/obs500

Emitted light

Reflected light

Light is reflected by particles in the liquid
-> More reflected light = higher turbidity

Photosensor and LED

@ivl
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The challenges for current measurement
techniques

* Fouling -> high maintenance
* Expensive

https://nerrdsonthewater.com/2017/03/10/our-sonde-grew-a-beard/
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The brief history of the Turbinator

<&

My colleague Fredrik
gets an idea of how
to measure turbidity
without touching the
water

What should
we use it for?
Let’s start with
stormwater
systems

2018

Try to collect training
data for the neural
network in the
stormwater system,
realize that its not
going to work

Initiate cooperation
with EEWare and
Greenwave to build
next generation
prototypes

Learn from Greenwave
how quantization works

3 prototypes deployed
in Gothenburg

2023

Verify that the

a minimal lab
setup

theory works in

Develop first
prototype
based on off-
the-shelf
hardware

Start building
facility for
collecting
training data

Train first neural
network based on
training data from the
data collection facility

10 first prototypes
received from EEWare
and patent approved
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How it works

High water level

Water level = x

Low water level

Camera

Laser ] T ﬁ

Turbidity = 10

@ivl

Neural network, trained on a lot of data . SVENSKA
MILJOINSTITUTET




Finding the laser dot in the image

We can’t maintain the whole
image in memory. Not even
2592x100.

Argmax is the current (not so
good) solution

Maybe possible to compress
image since its mostly black
and run neural network on
compressed information?
First take another photo with
low resolution and find
laser?

Just implement a better
version of argmax?

@ivl
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The distance to the surface varies and
complicates everything

T Turbidity: 23 T Turbidity: 23
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. _SVENSKA
MILJOINSTITUTET



Gather data while varying both turbidity

and distance to surface Motor-driven winch
9 programmed to our
' '_T needs

* Turbidity is varied by a regulated
pump with sewer water

* The distance to the surface is varied by
a motor-driven winch that brings the
sensor up and down

Mixing
o Turbidity sensor

Clean water _\{_\/ /
\V

Sewer water, / ‘
pump-controlled —
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Data coverage matrix

From 2022-05-31 01:56:51 to 2022-06-02 04:37:24
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But we also get a lot of junk data

 Can’tfind laser in the image

* No water

* Too high water level to catch laser with the camera
* Something on the surface

We train a separate neural network to learn to identify if the image is
similar to the good training data

@ivl
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Design neural network based on our
requirements

* Turbidity depends on the both * Multi-input model (image and
image and the distance to distance to surface)
surface -
e Multi-output model (turbidity
* We need to be able to tell if and indication of image
the incoming image is worthy quality)

creating a turbidity prediction

MaxPool2D

(image by netron.app) @ | Vl-
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Luckily, the theory seems to hold

* Mean error of around 10-15% on validation data.

e This accuracy would never be enough in a lab but
considering we are not touching the water, we’re very
satisfied with the results.

turbidity
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Time to move on from the ML part to the tiny

part

The main requirement: the sensor must be
able to be left in a stormwater well for more
than a year (of course the longer the better)
without maintenance or battery charging.

|

The neural network has to be able to run
on the sensor with very low power

consumption l

Greenwave GAP8 — ultra low power Al
processor

@ivl
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Making Tensorflow Lite models able to run on
Greenwave GAPS processor

e We convert our Tensorflow model to
Tensorflow Lite. Then use the GAP

(with or wio quantization) g
2
. = Q
« NNTool: python package with tensorflow — ¥ AutoTiler Model _| :
lite model as input. It implements model - 3
optimization and quantization, and e ' =
creates AutoTiler models. § =
oy |
. o
AutoTiler: optimizer of data memory
management between memory within

and outside GAP processors.
Generates C-code to be executed on the
GAPS.

@ivl
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Moving from floating point to integer precision
by quantization

 The GAPS8 processor uses integer precision But! All data (images) are
when doing its neural network calculations. stored on the sensors, so when
This means that our floating point tensorflow we bring the sensors back from
model has to be quantized, which causes the wells, we can postprocess
some loss in accuracy. all data with floating point

* In other words, each of the floating point precision

weights in the network and each floating
point bias (100k+ parameters) has to be
rounded in an efficient way to not lose
accuracy.

* With that said, we do experience some
accuracy drop (sometimes to the order of 10-
20%). But we have not made an effort to
minimize it!

120
Water level

Turbidity on sensor
Turbidity postprocessed
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Send data from stormwater wells using NB-loT

* We decided to go for NB-loT, it sends data
using the cellular network, in contrast to the
option LoRa which uses local gateways.

* Some problems with connectivity due to the

thick iron lids covering the sensor.

Pros of NB-loT:

Better penetration of structures
than LoRa.

Plug and play as long as we have
SIM-cards for the country we’re in
(and that there are cellular
reception).

Cons of NB-loT:

Only small amounts of data can
be sent.

Higher power consumption than
LoRa.

NB-loT
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What are the current challenges, improvement

ideas and limitations?

The reception in certain stormwater wells is bad.

It is energy consuming to send data, it stands for the
majority of the energy consumption.

The environment in the stormwater wells is harsh.

The OK/NOK classification of images need to be
improved, a lot of data is marked bad.

Finding the laser dot in the images is hard with our
current limitations in computing power.

We can’t send images, costs too much energy

Training data does not cover all possible variations
in turbidity and distance to surface.

New antenna? External maybe? Workshops ongoing.

Especially if we move to GAP9 which reduces energy
consumption a lot, sending data will be what drains our battery.

Can’t change this, but the sensor need to be able to withstand
the harsh environment.

Train classifier with more data. Current network has discrete
output, maybe move to continuous?

Input image very big for neural network. Limited standard
functions on the processor. Maybe train another localization
neural network

In the future maybe add expansion pack with cable going above
surface with antenna and solar cell/power supply? )
Building new data collection facility. Also, investiga@dVl
possibility of augmenting data. MILUBINSTTOTET

How can we know if the augmented data is realistic?



Some remaining topics

85 General / Overview & o3
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~ Data overview

 What happens on the receiving end of the ity E—
NB-loT communication? The data
platform!

* What can we achieve using 1000 | R
Turbinators that all measure turbidity and b o e s o oum sm ok s e wm o
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Thank you!

Jens.wilhelmsson@ivl.se
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