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Join Growing tinyML Communities:

15.6k members in
49 Groups in 41 Countries

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/
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&
12.4k followers
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The tinyML Community
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Matthew Stewart

Matthew Stewart is a postdoctoral researcher in the Edge
Computing Lab at Harvard University. He holds a Ph.D. and
MSc in Engineering Sciences and Data Science from
Harvard University, and an integrated BEng/MENg in
Mechanical Engineering from Imperial College London and
the National University of Singapore. Matthew's research
work is highly interdisciplinary, encompassing embedded
machine learning, autonomous vehicles, benchmarking
tools for reinforcement learning and robotics, sustainable
computing, and machine learning sensors. Matthew is also
a part-time blogger for Towards Data Science, a co-creator
of the HarvardX tinyML courses, and a research coordinator
at MLCommons.
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No Good Data Left Behind

5 Quintillion

bytes of data produced
every day by loT

Source: Harvard Business Review, What’s Your Data Strateqy?, April 18, 2017
Cisco, Internet of Things (IoT) Data Continues to Explode Exponentially. Who Is

Using That Data and How?, Feb 5, 2018

<1%

of unstructured data Is
analyzed or used at all
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How do we architect future Tiny Machine Learning (tinyML) sensors
efficiently, and robustly into the embedded ecosystem?
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Machine Learning Sensors
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Machine Learning Sensors
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An ML sensor is a self-contained system that
utilizes on-device machine learning to extract
useful information by observing some complex set
of phenomena in the physical world and reports it
through a simple interface to a wider system.

"
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Machine Learning Sensors
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Machine Learning Sensors
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ML Sensors - Guiding Set of Principles

1. We need to raise the level of abstraction to enable ease of use for scalable deployment of ML sensors;
not everyone should be required to be a developer or an engineer to leverage ML sensors into their
ecosystem.

2. The ML sensor’s and defined by its input-output behavior
instead of exposing the underlying hardware and software mechanisms that support ML model execution.

1. An ML sensor’'s implementation must be clean and complexity-free. Features such as reusability,
software updates, and networking must be thought through to ensure data privacy and secure execution.

2. ML sensors must be transparent, indicating in a publicly and freely accessible ML sensor datasheet
all the relevant information to supplement the traditional information available for hardware sensors.

3. We as a community should aim to foster an open ML sensors ecosystem by maximizing data, model,
and hardware transparency where possible, without necessarily relinquishing any claim to intellectual

property.
35



ML Sensor Principles — Abstraction

1. We need to raise the level of abstraction to enable ease of
use for scalable deployment of ML sensors; not everyone

should be required to be a developer or an engineer to leverage
ML sensors into their ecosystem.
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L Sensor Principles — Abstraction

1. We need to raise the level of abstraction to enable ease of use for scalable deployment of ML sensors;
not everyone should be required to be a developer or an engineer to leverage ML sensors into their
ecosystem.
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ML Sensor Principles — Abstraction

1. We need to raise the level of abstraction to enable ease of use for scalable deployment of ML sensors;
not everyone should be required to be a developer or an engineer to leverage ML sensors into their
ecosystem.
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ML Sensor Principles — Data-centric

2. The ML sensor’s and

defined by Iits input-output behavior instead of exposing the

underlying hardware and software mechanisms that support ML
model execution.
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ML Sensor Principles — Data-centric

2.

The ML sensor’s and defined by its input-output behavior instead
of exposing the underlying hardware and software mechanisms that support ML model execution.
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ML Sensor Principles — Simplicity

1. An M
free.
must

_ sensor's implementation must be clean and complexity-
~eatures such as reusabillity, software updates, and networking

oe thought through to ensure data privacy and secure execution.
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ML Sensor Principles — Simplicity

1. An ML sensor’'s implementation must be clean and complexity-free. Features such as reusability,
software updates, and networking must be thought through to ensure data privacy and secure execution.
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T [ ]
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& O| We need to define or rely on standard interfaces
T CERe > |0, 191n and mechanisms for communication with sensors.
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ML Sensor Principles — Simplicity

1. An ML sensor’'s implementation must be clean and complexity-free. Features such as reusability,

software updates, and networking must be thought through to ensure data privacy and secure execution.
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We need to define data
formats to enable
interoperability and
exchange of ML sensors
across manufacturers
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ML Sensor Principles — Simplicity

1. An ML sensor’'s implementation must be clean and complexity-free. Features such as reusability,
software updates, and networking must be thought through to ensure data privacy and secure execution.

= |eo. 121 n X=B. Y=0 X=255. Y=0 typedef struct _ attribute__ ({__packed_)) {

. T uint8_t reserved[2];
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: : } person_sensor_results_header_t;
:Y: Byte 1 :
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: int8_t id;

A

- uint8_t is_facing;
Cﬁ"ERﬁ 60' 1 21 n } person_sensor_face_t;

—=m
@ * E Right: Byte 2 typedef struct __attribute__ ((__packed__)) {

o~ person_sensor_results_header_t header;

|<—1.091r1

int8_t num_faces;

* ‘_: person_sensor_face_t faces[4];
| E . E | o uint16_t checksum;
1. 071 n X=8, Y=255 X=255, Y=255 } person_sensor_results_t;




ML Sensor Principles — Documentation

2. ML sensors must be transparent, indicating in a publicly and freely
accessible ML sensor datasheet all the relevant information to
supplement the traditional information available for hardware sensors.
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2. ML sensors must be transparent, indicating in a publicly and freely accessible ML sensor datasheet
all the relevant information to supplement the traditional information available for hardware sensors.
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2. ML sensors must be transparent, indicating in a publicly and freely accessible ML sensor datasheet
all the relevant information to supplement the traditional information available for hardware sensors.
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Model Characteristics
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e Provides a concise, holistic picture of the performance
characteristics of a machine learning model

e For our sensor, this is a binary classification person
detection model which processes raw image data

(Mitchell et al., 2019)

Model
Characteristics
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https://scholar.google.com/citations?user=l0fXzvIAAAAJ&hl=en&oi=sra
https://arxiv.org/pdf/1810.03993

Data Nutrition Label

At a Glance
2 i}
(O] O]
About humans Upstream sources Technical review Ethical review
Yes Yes Yes Unsure
COCO Dataset https:/arxiv.org/pdf/190 Not Applicable
6.05721.pdf
Interrogating data quality
& generating “nutrition label”
DATASET MODEL
Dataset Preprocessing Development

Data Plpelme

eﬁH

Update frequency
No

Not Applicable

Deployment

e Offers a succinct, comprehensive snapshot of dataset

attributes used for model training

o For our sensor, this focuses on attributes of the visual
wake words dataset derived from MS-COCO.

(Holland et al., 2020; Chmielinski et al., 2022)

Data
Nutrition Label
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https://scholar.google.com/citations?user=l0fXzvIAAAAJ&hl=en&oi=sra
https://arxiv.org/pdf/1805.03677.pdf?source=post_page---------------------------
https://arxiv.org/pdf/2201.03954

Privacy and Security Label

. o - Security & Privacy Details
Security & Privacy Overview . .
Harvard University
Harvard Universit
o secay
Person Detection Module PA1 @ o
Firmware version: 0.1 - updated on: 2023-02-20 @ -
The device was manufactured in: United States o
........
f—
Security updates No security updates
10} dciomd
Security Access control No user account is allowed et duciosa
Mechanisms o ] essscoe. e
S tcon ﬂ l
collection |
Visual
Sensor type | Camera |
Purposs: Pru\.nulng an.d improving
device functions |
e
Data Practices |
Datastoredin |\ ioud stora
the cloud 9 |
Data shared with | Not shared
PRI ——
Datasoldto | Notsold . Prsence o
Other collected o
data  eom
" ot
Privacy policy Nt disclosed -
o —— o
LT ——
(8] 4 =]
o Detailed Security & Privacy Label: ﬁ o i
Notdleciossd T s [ ——
More infol S E Physic ol actuations and triggers.
S—
CMU IoT Security and Privacy Label CISPL 10 iotsecurityprivacy.org (&) bt | —

. Privacy. Provides clear and transparent information regarding

data capture, usage, and storage for each data modality.

. Security. Safety protocols and security mechanisms associated

with the device are outlined.

(Emami-Naeini et al., 2021)



https://scholar.google.com/citations?user=l0fXzvIAAAAJ&hl=en&oi=sra
https://par.nsf.gov/servlets/purl/10316405
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Performance Analysis
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Provides an indication of demographic biases as well as
performance changes under varying environmental conditions.

Experimental study conducted under different lighting and
distances to assess sensor performance in real-world conditions.
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Confidence Value

Experimental Study Detalls

. Data collected from 39 participants

Open-source Useful Sensor
. Each participant tested at three different person detector person detector
distances and three lighting levels (nine total
scenarios)

. Ten measurements (~10 s) taken at each
location and averaged

. Six sensors utilized: three open-source ML
sensors and three commercially available
(Useful Sensors)

Background

. Neutral background environment with no Environment

ambient light exposure; 32 homogeneously
distributed overhead lights
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Compliance

RoHS

compliant

C

ML sensors should be tested by 3rd party certification agencies or
bodies that specialize in AI/ML technologies to:

1.  Ensure adherence to industry standards and regulations
1.  Support data integrity and accuracy

1.  Foster trust in the product's performance and reliability

Compliance
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Hardware Detalls

Diagram and Form Factor

= <0.121n Dia -\0.0901n

©

Diagram and
Form Factor

1.09in—>

w RO

CAMERA = <(0,.12in

' I

[ | I

Ci i ,

= |

|<71, o7in—>|_’|\ S <—)| : Hardware Characteristics :
|

! :

' I

QUIIC

@ DIAG USB

0.381n

Communication Specification

12C/Qwiic mode Conforms with SparkFun Qwiic electrical/mechanical specifications.
https://www.sparkfun.com/qwiic

I

I ..

I Communication
Max cable length 1 m : SpeCiﬁcation and

I

I

1

Max data rate 100 kb/s Pinout
Module Orientation Red arrow on sticker pointswp. | f e e e e - == = ]
GPIO mode SCL/SDA lines can be customized to make programmable flag

lines (I, max = 12 mA)

Diagnostic LED Default behavior of green LED on board: illuminates for one second
on power-up, then illuminates when person detected.

Data Transfer and Format Single byte: number from 0-255 representing confidence score

12C Address 0x22




Environmental Impact

User Interface ML Training
Tran 1.3%
Transport Memory
e 2.1%
Others
13.3%
PCB
Total Emissions 6.8%
Sensing 234 kg CO2-eq
32.9%
Power Supply
22.2%
Processing
7.3%

. Need to consider environmentally-relevant metrics such as
carbon emissions, water usage, and eutrophication potential.

e Carbon emissions have two relevant sources: operational energy
consumption and hardware manufacturing and infrastructure.

. Majority of emissions from our person detection sensor are
associated with the embodied footprint. Data estimated using our
TinyML sustainability calculator.

(Gupta et al., 2022: Prakash et al., 2022)
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https://arxiv.org/pdf/2301.11899

Datasheet Overview

——————————— ] - - - - - - - S - S — - —
I | | ! ' |
Harvard Universiy S | : Compliance '
B—  — = = Description, Features : S :
and Use case I | |
| : Environmental Impact [
___________ Ny
—————————— o R m_ R R LR RN
1! [
1! : [
! : Diagram and
Privacy and Security 1! |
| Form Factor |
1! |
N -—— e o o o o e o o ol b o e o o o o — -
> il
R ] I
I |
Data ] e I
" Hardware Characteristics
Nutrition Label | |
1 |
! s
! 1
I Communication 1 Model
: FEEE I ETITN e I Characteristics
T ' | Pinout :
M T e e [
i ol g N Performance Analysis

User intertace
Tsgen
7 -
= *0.12in Dia = 0.090in
=
g 20
T CRERA > [0, 12in g e
@ |Us )
- a
o QUIIC
ENO)
1.071ry
1ef . —- 1ef
_— |
& oy ~ - a8y
| S ~
L TR Iy § anf ™
% ul f 2 [T
F a1 _/'/’ azf
l ROC curve [area = 084) PR cutve (ares = 0.83)
N uﬂ 9 u‘? OTI n‘q U" '|-Q ¢ uﬂ.D U.l‘ le C" 0" 1o
False Postive Rate Fecal
a7
o 5.5%
06
5
2 [ 1]
- 7% o
63

Predicted

60



ML Sensors - Guiding Set of Principles

3. We as a community should aim to foster an open ML sensors ecosystem by maximizing data, model,
and hardware transparency where possible, without necessarily relinquishing any claim to intellectual

property.
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& misensors.org

MLSensors Home  Whitepaper  Datasheets  GitHub  Email  Team

Machine Learning Sensors

Machine Learning Sensors

An ML sensor is a self-contained system that utilizes on-device

machine learning to extract useful information by observing
some complex set of phenomena in the physical world and
reports it through a simple interface to a wider system.

Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications. Current
instantiations of embedded ML suffer from complex integration, lack of modularity, and privacy and security concerns from
data movement. ML sensors provide a more data-centric paradigm for embedding sensor intelligence on edge devices to
combat these challenges.

Our vision for sensor 2.0" entails segregating sensor input data and ML processing from the wider system at the hardware
level and providing a thin interface that mimics traditional sensors in functionality. This separation leads to a modular and
easy-to-use ML sensor device. ML sensors increase privacy and accuracy while making it easier for system builders to
integrate ML into their products as a simple component.

To learn more about our approach, check out our ML sensor whitepaper, as well as our recent work on datasheets for
machine learning sensors.

Challenges
g 1
o 2= \
v
4 :
e % w
v— v
Interface Standards Ethics
What universal interface is needed for ML What standards need to be in place for ML What ethical considerations are needed for
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Recap of ML Sensors

We need to raise the level of abstraction to enable ease of use for scalable deployment of ML sensors;
not everyone should be required to be a developer or an engineer to leverage ML sensors into their
ecosystem.

The ML sensor’s and defined by its input-output behavior
instead of exposing the underlying hardware and software mechanisms that support ML model execution.

An ML sensor’'s implementation must be clean and complexity-free. Features such as reusability,
software updates, and networking must be thought through to ensure data privacy and secure execution.

ML sensors must be transparent, indicating in a publicly and freely accessible ML sensor datasheet
all the relevant information to supplement the traditional information available for hardware sensors.

We as a community should aim to foster an open ML sensors ecosystem by maximizing data, model,
and hardware transparency where possible, without necessarily relinquishing any claim to intellectual

property.
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Call to Action

Radcliffe exploratory seminar to determine:
What ethical considerations are
necessary when developing

ML sensors?

= What compliance standards must be met

o~
&

by ML sensor developer and
manufacturers?

How should ML sensors interface with
- existing systems?

N
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Privacy & N
Security Oﬁ+

O

- — |
Datasheet
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/

Compliance

=
=
=
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/ Standards
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MACHINE LEARNING SENSORS

Pete Warden' Matthew Stewart? Brian Plancher* Colby Banbury® Shvetank Prakash’ Emma Chen?
Zain Aspar' Sachin Katti' Vijay Janapa Reddi®

! Stanford University *Harvard University

ABSTRACT
Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications.
Current instantiations of embedded machine learning (ML) suffer from complex integration, lack of modularity,
and privacy and security concerns from data movement. This article proposes a more data-centric paradigm for
embedding sensor intelligence on edge devices to combat these challenges. Our vision for “sensor 2.07 entails
segregating sensor input data and ML processing from the wider system at the hardware level and providing a
thin interface that mimics traditional sensors in functionality. This separation leads to a modular and easy-to-use
ML sensor device. We discuss challenges p by the standard apf h of building ML processing into the
software stack of the controlling microprocessor on an embedded system and how the modularity of ML sensors
alleviates these problems. ML sensors increase privacy and accuracy while making it easier for system builders to

integrate ML into their products as a simple component. We provide examples of prospective ML sensors and an
illustrative datasheet as a demonstration and hope that this will build a dialogue to progress us towards sensor 2.0,

1 INTRODUCTION

Since the advent of AlexNet [43], deep neural networks have
proven to be robust sol to many chall that involve
making sense of data from the physical world. Machine
learning (ML) models can now run on low-cost, low-power
hardware capable of deployment as part of an embedded
device. Processing data close to the sensor on an embedded
device allows for an expansive new variety of always-on
ML use-cases that preserve bandwidth, latency, and energy
while improving responsiveness and maintaining data pri-
vacy. This emerging field, commeonly referred to as embed-
ded ML or tiny machine learning (TinyML) [73, 18, 39, 59],
is paving the way for a prosperous new array of use-cases,
from personalized health initiatives to improving manufac-
turing productivity and everything in-between.

However, the current practice for combining inference and
sensing is cumbersome and raises the barrier of entry to
embedded ML. At present, the general design practice is to
design or leverage a board with decoupled sensors and com-
pute (in the form of a microcontroller or DSP), and for the
developer to figure out how to run ML on these embedded
platforms. The developer is expected to train and optimize
ML models and fit them within the resource constraints of
the embedded device. Once an acceptable prototype imple-
mentation is developed, the model is integrated with the rest
of the software on the device. Finally, the widget is tethered
to the device under test to run inference. The current ap-
proach is slow, manual, energy-inefficient, and error-prone.

?
{.

Eo D

Processor Cloud

h%ﬁ

Physical
Sensar

Figure I. The Sensor 1.0 paradigm tightly couples the ML model
with the application processor and logic, making it difficult to
provide hard guarantees about the ML sensor’s ultimate behavior.

LLLLLL
A = 3 =
TITTTT
Machine Leamning Processor Cloud

(ML) Sensar

Figure 2. Our proposed Sensor 2.0 paradigm. The ML model is
tighilly coupled with the physical sensor, separate from the applica-
tion processor, and comes with an ML sensor datasheet that makes
its behavior P to the system i and pers.

It requires a sophisticated understanding of ML and the in-
tricacies of ML mode] implementations to optimize and fit
a model within the constraints of the embedded device.

arXiv:2306.08848v1 [cs.LG] 15 Jun 2023

Datasheets for Machine Learning Sensors

Matthew Stewart'* Pete Warden™® Yasmine Omri' Shvetank Prakash' Joao Santos'
Shawn Hymel' Benjamin Brown' Jim MacArthur! Nat Jeffries® Brian Plancher®

Vijay Janapa Reddi’

'Harvard University 2Stanford University *Barnard College, Columbia University
4Edge Impulse °Useful Sensors

Abstract

Machine learning (ML) sensors offer a new paradigm for sensing that enables
intelligence at the edge while empowering end-users with greater control of their
data. As these ML sensors play a crucial role in the development of intelligent
devices, clear dc ion of their specificati functionalities, and limitations
is pivotal. This paper introduces a standard datasheet template for ML sensors and
discusses its essential components inluding: the system’s hardware, ML model and

dataset attributes, end-to-end performance metrics, and environmental impact. We
provide an example datasheet for our own ML sensor and discuss each section in
detail. We highlight how these datasheets can facilitate better understanding and
utilization of sensor data in ML applications, and we provide objective measures
upon which system performance can be evaluated and compared. Together, ML
sensors and their datasheets provide greater privacy, security, transparency, ex-
plainability, auditability, and user-friendliness for ML-enabled embedded systems.
We conclude by emphasizing the need for standardization of datasheets across the
broader ML community to ensure the responsible and effective use of sensor data.

1 Introduction

The recent emergence of tiny machine learning (TinyML), a branch of ML dedicated to ultra-low
power devices, has opened the door to a myriad of new possibilities for intelligent sensing at the edge
by leveraging embedded systems [1, 2]. TinyML enables resource-constrained devices to perform
complex computations with low latency and minimal energy consumption, making it particularly
suitable for applications such as the Internet of Things (I0T), wearables, and smart sensors. However,
integrating TinyML models into physical sensor systems can be complex, often requiring a deep
understanding of ML algorithms and embedded systems. This knowledge barrier can hinder the
widespread adoption of on-device intelligence. To address these challenges, the “ML sensor” has
been proposed as an innovative solution that tightly couples the TinyML model with the physical
sensor, effectively offloading the computational burden from the application processor [3]. This ML
sensor architecture introduces useful layers of abstraction both at the hardware level and at the level
of the full integrated device, creating a fully self-contained intelligent sensor module.

ML sensors, however, also present a new chall the lack of p y [4, 5]. Unlike traditional
sensors that come with datasheets providing hardware and operating characteristics, ML sensors
lack such documentation. This absence hampers developers’ ability to assess sensor suitability and
independently evaluate performance. To address this gap, ML sensors require a datasheet that not only
includes traditional sensor specifications but also captures ML model characteristics, dataset details,
and other important iderations such as envi | impact and end-to-end performance. With
such a datasheet, users can easily determine whether an ML sensor is suitable for their application.
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