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Philip Leong

Philip Leong received the B.Sc., B.E. and Ph.D. degrees 

from the University of Sydney. In 1993 he was a consultant 

to ST Microelectronics in Milan, Italy working on advanced 

flash memory-based integrated circuit design. From 1997-

2009 he was with the Chinese University of Hong Kong. He 

is currently Professor of Computer Systems in the School of 

Electrical and Information Engineering at the University of 

Sydney, Visiting Professor at Imperial College, and Chief 

Technology Officer at CruxML Pty Ltd.



Low Precision Inference and Training 

for Deep Neural Networks

Philip Leong
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Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems  

- Novel architectures, applications and design techniques using FPGAs

› Research: reconfigurable computing, radio frequency machine learning
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Motivation

› CPUs/GPUs designed to support 

datatypes of fixed wordlength

- Double, float, long, short, char

› FPGA and ASICs can provide 

custom datapaths of arbitrary 

wordlength
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Tradeoff between performance and precision
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Slide: Xilinx

› So how can we utilize low-precision for inference and training?



Outline

› Block Minifloat

› Time series Prediction

› Transfer Learning
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Block Minifloat
Sean Fox



Motivation

▪ Training has greater efficiency problem than inference!
▪ E.g. 3x more MACs, much higher memory requirements

▪ Specialized number representations have been proposed
▪ Alternatives to FP32/FP16

▪ 4-8 bits for weights, activations and gradients

▪ Cheaper and faster training systems

▪ Focus on Edge (not sure about the Data Center)
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Minifloat

▪ Narrow floating-point representation
▪ Our range between 4-8 bits

▪ NaN/Infinity NOT supported

mantissaexponentsign

IEEE754 (FP32)

mes
Minifloat

▪ Pros:
▪ Memory (fewer bits)

▪ Smaller hardware

▪ Cons:
▪ Dynamic Range (exponent 

bits)
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Block Minifloat

▪ Share exponent bias across blocks of NxN minifloat numbers

▪ Dynamic range (with fewer bits)

▪ Denser dot-products in 

hardware

32



Block Minifloat

▪ Share exponent bias across blocks of NxN minifloat numbers

▪ Dynamic range (with fewer bits)

▪ Denser dot-products in 

hardware

▪ Align wtih max exponent

▪ Underflow is tolerated 
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Block Minifloat
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Block Minifloat
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▪ Kulisch Accumulator: Fixed point accumulator wide enough to 

compute error-free sum of floating-point products

▪ Integer-like hardware complexity for exponent <=4 bits

Fused Multiply-Add (FMA) with 
Kulisch Accumulation
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Implementation Details

▪ Three techniques to reduce data loss:

▪ Gradual underflow, Block Design, Hybrid Formats 

▪ Simulate specialized BM hardware on GPU (with FP32)

▪ Apply Block Minifloat to all weights, acts, grads

▪ Our Spectrum of Block Minifloats
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Data Loss Experiments
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End-to-end GPU Training with BM

• Weight, activation and gradient tensors quantized to BM with stochastic rounding

• Kulisch accumulator ensures our dot products are exact (can use FP CUDA lib directly)

• FP32 used for Kulisch to floating-point conversion, block minifloat alignments, quantization etc.

• Approx 1x floating point operation every N MACs, 5x slowdown
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Training Experiments (1)

ResNet18 on ImageNet Validation
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Training Experiments (2)

Transformer on IWSLT’14 DE-En dataset
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Training Experiments Summary

Training Accuracy 

with BM ≈ FP32
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RTL Synthesis Results

▪ Designs synthesized at 750MHz with Cadence RTL Compiler 

and 28nm cell library

▪ Fused multiply-add (FMA)

▪ 4x4 systolic matrix mutlipliers

BM8 area and 

power comparable 

to INT8
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Model: ResNet-18

Dataset: ImageNet

Imagenet
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BM units are:

- Smaller

- Consume less 

Power



Time Series Prediction
Wenjie Zhou



BM Inference and Training

› Previous work used GPU implementations with 28nm ASIC study

› Here we explore FPGA implementation

- NBEATS Inference and Training implementation using 4-bit mixed-precision BM 

- BM GEMM array and Training accelerator architecture for NBEATS 
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NBEATS Model

› N-beats: Neural basis 

expansion analysis for 

interpretable

time series forecasting. 

ICLR, 2019

› Achieves state of the art 

time series prediction 

results

› NN comprises mainly FC 

layers with shortcut 

connections
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Inference Accelerator Architecture
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GEMM

Vector Addition



GEMM Systolic Architecture

› Each PE performs multiplication and Kulisch accumulation

› Intermediate results are stored in the Kul buffer

› Result transformed to a BM format
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Accuracy 
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M4 competition dataset

Accuracy of BM8 is similar to FP32

Benchmark M4 dataset

Dataset Yearly, Quarterly, Monthly, 

Daily

Training Loss mean absolute percentage 

error(MAPE)

Validation Loss symmetric mean absolute 

percentage error (sMAPE)

Batch size 1024



Resource Utilisation
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Area of BM8 is similar to INT8 but smaller than FP16 



Inference Performance
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BM8 performance and power is close to INT8



NBEATS Training Accelerator Architecture
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Mixed-precision Block Minifloat Training
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Minifloat 

To Fixed

Minifloat 

To Fixed

Psum

Accum

>>Ka >>Kb

ebias δ

Normalization

BM MAC unit (PE) BM GEMM array



NBEATS Accuracy (Preliminary)

› Dataset: M4-Yearly, validation loss: SMAPE loss, block size: 64 
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Loss Configuration

weight activation error gradient

BM4(1) 14.471649 BM<2,1> unsigned 

BM<0,4>

BM<0,3> BM<0,3>

BM4(2) 14.463654 BM<2,1> unsigned 

BM<0,4>

BM<0,3> FP32

BFP8 12.914178 BM<0,7> BM<0,7> BM<0,7> BM<0,7>

BM8 12.939716 BM<2,5> BM<2,5> BM<0,7> BM<0,7>

FP32 12.924581



Transfer Learning
Chuliang Guo



Motivation

› Private and secure

- No personal information uploaded to cloud

› Adapt to changing conditions

- To deal with non-stationary data

› Size, weight, and power (SWaP)

- Converge to a good solution faster through pretraining

Why might we want to do transfer learning at the Edge?
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CNN Training Workflow

[1] Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

› Back-propagation using SGD

– 3X workload of inference

Fig. 1 CNN training workflow: (1) Conv in forward path, (2) transposed 
Conv in backward path, (3) dilated Conv in gradient generation, and (4) 
weight update.

Fig. 2 Non-unit stride Conv, transposed Conv, and 
dilated Conv [1]. 

Arbitrary stride Conv (Forward) Transposed Conv (Backward)

Dilated Conv (Gradient Generation)



› Layer-wise CNN blocks

– Unified bm(2,5) representation

- Non-unit stride Conv support

- Simplified mult/add/MAC

- Fused BN&ReLU

› Main blocks

- Unified Conv

- Conv & transposed Conv

- Dilated Conv

- Weight kernel partition

ResNet20/VGG-like accelerator

Fig. 3 Overall architecture of the generic training accelerator for 
layer-by-layer processing. BN and ReLU are fused.



› Shortcut addition after BN and ReLu functions (enabling fusing)

› Unified bm(2,5) for activations, weights, errors, and gradients (simpler HW)

› Full precision accuracy with these changes

CIFAR-10 Training from Scratch

Tab. 1 Top-1 accuracy on CIFAR-10 and SVHN.Fig. 4 Modifications to basic building block of ResNet20 
and VGG-like.



Transfer learning application

– Channel tiling accelerator

– Updating last several Conv & 

FC

• Shortened back-propagation

• Reduced BRAM for 

activations

• Faster convergence

Fig. 8 Transfer learning example from CIFAR-100 to CIFAR-10.  



Resource and Power



Latency Breakdown
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Conclusion



▪ Low-precision formats have wide applicability for inference and 

training in Edge applications 

▪ Doesn’t necessitate accuracy reduction

▪ Faster Training is possible using BM

▪ Fewer bits – important for memory-bound

▪ Narrow exponents – denser MAC in compute-bound

What are the applications?

Summary
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http://phwl.org/talks

mailto:philip.leong@sydney.edu.au
http://phwl.org/talks


Copyright Notice

This multimedia file is copyright © 2023 by tinyML 
Foundation. All rights reserved. It may not be duplicated 
or distributed in any form without prior written approval.

tinyML® is a registered trademark of the tinyML 
Foundation.

www.tinyml.org



Copyright Notice
This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the 
opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does 
not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the 
authors and their respective companies and may contain copyrighted material. As such, it is strongly 
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding 
the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org


	Default Section
	Slide 1:   “Neural Architecture Search for Tiny Devices”
	Slide 2
	Slide 3: Executive Strategic Partners
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Platinum Strategic Partners
	Slide 8
	Slide 9
	Slide 10: Gold Strategic Partners
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22:      tinyML EMEA Innovation Forum 2023   Connect, Unify, and Grow the tinyML EMEA Community June 26 - 28, 2023  https://www.tinyml.org/event/  
	Slide 23: Reminders
	Slide 24: Philip Leong

	Default Section
	Slide 25: Low Precision Inference and Training for Deep Neural Networks
	Slide 26: Computer Engineering Laboratory
	Slide 27: Motivation
	Slide 28: Outline
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Data Loss Experiments
	Slide 38: End-to-end GPU Training with BM
	Slide 39
	Slide 40: Training Experiments (2)
	Slide 41
	Slide 42
	Slide 43: Imagenet
	Slide 44
	Slide 45: BM Inference and Training
	Slide 46: NBEATS Model
	Slide 47: Inference Accelerator Architecture
	Slide 48: GEMM Systolic Architecture
	Slide 49: Accuracy 
	Slide 50: Resource Utilisation
	Slide 51: Inference Performance
	Slide 52: NBEATS Training Accelerator Architecture
	Slide 53: Mixed-precision Block Minifloat Training
	Slide 54: NBEATS Accuracy (Preliminary)
	Slide 55
	Slide 56: Motivation
	Slide 57: CNN Training Workflow
	Slide 58: ResNet20/VGG-like accelerator
	Slide 59: CIFAR-10 Training from Scratch
	Slide 60: Transfer learning application
	Slide 61: Resource and Power
	Slide 62: Latency Breakdown
	Slide 63
	Slide 64: Summary
	Slide 65: References
	Slide 66: Thank you!

	Spare slides
	Slide 67: Copyright Notice
	Slide 68: Copyright Notice


