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The Leading Development
Platform for Edge ML




Qualcomnm
Al research

Advancing Al
research to make
efficient Al ubiquitous

Power efficiency Personalization Efficient learning

Model design, Continuous learning, Robust learning
compression, quantization, contextual, always-on, through minimal data,
algorithms, efficient privacy-preserved, unsupervised learning,
hardware, software tool distributed learning on-device learning

A platform to scale Al
across the industry

Qualcomm Al Research is an initiative of Qualcomm Technologies, Inc.
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Object detection, speech
recognition, contextual fusion
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Edge cloud
Reasoning
Scene understanding, language
understanding, behavior prediction
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Reinforcement learning C|Oud

for decision making
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Renesas is enabling the next generation of Al-powered solutions
that will revolutionize every industry sector.
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Easily deploy your
tinyML solutions with
Arduino Pro

arduino.cc/pro
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© 2022 Arm

Powerlng tinyML Innovatlon

',.,~Arm Al Virtual Tech_

Talks

The latestin Al trends technologles & best
- practices from Arm and our Ecosystem
- :Pa'r‘t-ners.

-Demos, code examples, workshops, panel

. sesslonsand much more' ..

| | FortnlghtIyTuesday @ 4pm GMT/8am PT

Find out more:
- www.arm.com/techtalks -
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STMicroelectronics provides extensive
solutions to make tiny
Machine Learning easy
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Join Growing tinyML Communities:

14k members in
47 Groups in 39 Countries

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

4k members

&
11.6k followers

OftsEn

The tinyML Community
https://www.linkedin.com/groups/13694488/
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Philip Leong

Philip Leong received the B.Sc., B.E. and Ph.D. degrees
from the University of Sydney. In 1993 he was a consultant
to ST Microelectronics in Milan, Italy working on advanced
flash memory-based integrated circuit design. From 1997-
2009 he was with the Chinese University of Hong Kong. He
IS currently Professor of Computer Systems in the School of
Electrical and Information Engineering at the University of
Sydney, Visiting Professor at Imperial College, and Chief
Technology Officer at CruxML Pty Ltd.




Low Precision Inference and Training
for Deep Neural Networks

Philip Leong
Director, Computer Engineering Laboratory
http://phwl.org/talks

TTTTTTTTTTTTTTT
SYDNEY




2= | THE UNIVERSITY OF

== SYDNEY

Computer Engineering Laboratory

» Focuses on how to use parallelism to solve demanding problems

- Novel architectures, applications and design techniques using FPGAs

» Research: reconfigurable computing, radio frequency machine learning
R N S o ,r.‘,}‘,g., \ T -
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Motivation

Tradeoff between performance and precision

» CPUs/GPUs designed to support
datatypes of fixed wordlength weights

1b ~66 ~70 M
- Double, float, long, short, char ab 4 Y
» FPGA and ASICs can provide 16b ~1 ~5 M
custom datapaths of arbitrary 32b ~0.3 ~2 M
wordlength
Slide: Xilinx

» S0 how can we utilize low-precision for inference and training?

27
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- Outline

» Block Minifloat
» Time series Prediction

» Transfer Learning

28



Block Minifloat

Sean Fox




THE UNIVERSITY OF

SYDNEY Motivation

= Training has greater efficiency problem than inference!
= E.g. 3x more MACs, much higher memory requirements

= Specialized number representations have been proposed
= Alternatives to FP32/FP16
= 4-8 bits for weights, activations and gradients
= Cheaper and faster training systems
= Focus on Edge (not sure about the Data Center)

30
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== SYDNEY Minifloat

= Narrow floating-point representation
= Qur range between 4-8 bits
=  NaN/Infinity NOT supported

sign  exponent mantissa
[ ] | ] IEEE754 (FP32)
S e m
[I I ] Minifloat
= Pros: = Cons:
= Memory (fewer bits) = Dynamic Range (exponent

= Smaller hardware bits)

31
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SYDNEY Block Minifloat

= Share exponent bias across blocks of NxN minifloat numbers

: Exp. bias(B)
5 %

: — : x

X, _J7°

: g x;
xN‘li :
: Xy !

Miniflocat tensor BM tensor

= Dynamic range (with fewer bits)
= Denser dot-products in
hardware

32
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SYDNEY

Block Minifloat

= Share exponent bias across blocks of NxN minifloat numbers

Exp. bias(B)

g_._.““.__.““.__.““.:; ...... i E F“’—"—“”“___[:]
z 0=
: M, : ||
: [ )=
: xN—l
- xN—l
Minifloat tensor BEM tensor

IX|] minifloat (3,2)

|al| wvalue distribution

. . B
Align with max. exponent [] [
g P <>,
-6 -2 0 5
log, |al

= Dynamic range (with fewer bits)
= Denser dot-products in
hardware

= Align wtih max exponent
= Underflow is tolerated

33



Block Minifloat

= THE UNIVERSITY OF

ey SYDNEY

*

-—-”
i efw e[ e[ = E =
e [w e [w e[ v E[fv e[fu e (1)
W E|M E[M EL Ve[ e [fm e 1
f/ e = e
v EIvM EIV EL

Minifloat Block Minifloat
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Kulisch Accumulation

= Kulisch Accumulator: Fixed point accumulator wide enough to
compute error-free sum of floating-point products

= |nteger-like hardware complexity for exponent <=4 bits

A x B + C

€ M, €, My mc
v
mul (x)
¥
L3 kshift (<<)
| —
KULISCH ADDEND
!
kadd (+) <
v

C
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THE UNIVERSITY OF

== SYDNEY Implementation Details

= Three techniques to reduce data loss:
= Gradual underflow, Block Design, Hybrid Formats

= Simulate specialized BM hardware on GPU (with FP32)
= Apply Block Minifloat to all weights, acts, grads

= Our Spectrum of Block Minifloats

BMS (ours) (2,5)/(4,3)
BM?7 (ours) (2,4)/(4,2)
BM6 (ours) (2,3)/(3,2)
BMS5 (ours) (2,2)/(3,1)
BM5-log (ours) (4,0)/(4,0)
BM4 (ours) (2,1)/(3,0)

BM4-log (ours) (3,0)/(3,0)

36
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: Data Loss Experiments

1.0 - . 2.4 : - 40 ' ] l..fed100
A — area cost — RMSE(3.2) rg
= | = u.flow (3,2) 7. {80
0.8 — BM6W/o|| ,, %—® range E N 3
=T = o BO
_ a z
0.6 - 124 3 Jao 5
1.6} i 2
0.4} = +120
0.2 PR R S T S S 1.2 \1 i i i : °
“0 10 20 30 40 50 60 70 80 90 . . : 8 PO As e 29 3038
epochs 23 24 2° 2° 2T 2
(a) Validation Accuracy: Training (b) HW (left axis) vs Range (right (c) Minifloat scaling by varying the
with denormal numbers on Ima- axis): Selecting the block size exponent base
geNet
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End-to-end GPU Training with BM

. BM+Kul. FP32  BM —y BM+Kul. FP32 BM

iy e I+
> GEMM > X, ™ GEMM A > €
RF|

A L

(a) Fwd activation (b) Bwd activation grad.
BM BM+Kul. FP32 _BM
> GEMM > » W
X, > TWew,

(c) Bwd weight grad. and update

Weight, activation and gradient tensors quantized to BM with stochastic rounding
Kulisch accumulator ensures our dot products are exact (can use FP CUDA lib directly)

FP32 used for Kulisch to floating-point conversion, block minifloat alignments, quantization etc.
+ Approx 1x floating point operation every N MACs, 5x slowdown

38
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SYDNEY

Training Experiments (1)

a0
— FP32 — BMS5 Scheme BFP - BM
i (ours) (ours)
6-bit 67.0 69.0 +2.0
8-bit 69.2 69.8 +0.6

validation error (%)

0 10 20 30 40 50 60 70 80 90
epochs

ResNet18 on ImageNet Validation

39



Training Experiments (2)

BLEU

Sf o—e BM8 |7

% 5 10 15 20

epochs
Transformer on IWSLT’ 14 DE-En dataset

40



THE UNIVERSITY

SYDNEY Training Experiments Summary

Model (Dataset) [Metric] FP32 BMS
AlexNet (ImageNet) 56.0 56.2
EfficientNet-b0 (small ImageNet) 62.6 61.8
LSTM (PTB)[Val ppl.] 84.7 87.33

Transformer-base (IWSLT)[BLEU] 32.3 31.8 Training A
SSD-Lite (MbNetV2) (VOC)[mAP] 68.6 68.0 =" 8 0

41



THE UNIVERSITY OF

SYDNEY RTL Synthesis Results

= Designs synthesized at 750MHz with Cadence RTL Compiler
and 28nm cell library
= Fused multiply-add (FMA)
= 4x4 systolic matrix mutlipliers

Area Power
(m?) (uW)

FP32 4782 10051
FPS (w/ FP16 add) 829 1429
INTS (w/ INT32 add) 417 1269
BMS 391 1141
BM6 200 624

INTS (4x4 systolic) 7005 20253
FP8 (4x4 systolic) 18201 56202
BMS (4x4 systolic) 6976 18765

Component

BM8 area and
power comparable
to INT8
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Imagenet

1+—FP32 HFPB BMS
70 *——a—a BM7
& FP16 e FP8 BM6
L]
< 69- S2FP8
iJ
m [ ]
5 BM units are:
o 68
2 - Smaller
- 5 - Consume less
o b7
o Power
I_
INTE
66 e SWALP

0.000 0.001 0.002 0.003 0.004 0.005 0.006
Computational Density (1/um?)

Model: ResNet-18
Dataset: ImageNet
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Time Series Prediction
Wenijie Zhou
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BM Inference and Training

» Previous work used GPU implementations with 28nm ASIC study

» Here we explore FPGA implementation
- NBEATS Inference and Training implementation using 4-bit mixed-precision BM

- BM GEMM array and Training accelerator architecture for NBEATS

45
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- NBEATS Model
Block Input Data Input

» N-beats: Neural basis e e s s
expansion analysis for |
interpretable T NBEATS Block 1
time series forecasting. P fimsee
ICLR, 2019 i

» Achieves state of the art Y Y NBEATS Block 2

FC+RELU FC+RELU

time series prediction !
B¢

FC FL

> NN comprises mainly FC NBEATS Block 3
layers with shortcut v v Prediction
. Output
connections o) e | +

NBEATS Block N
| I
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Inference Accelerator Architecture

Vector Addition
Weight >
EMGEMM+
BMVecAdd |« KulToEM
= | *
IFM buffer OFM buffer
Input > o
IM buffer (A[K]) '."3[|"‘i]lI
Qutput v
| ExpAlign+
DDR FPGA RELU

GEMM

a7
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GEMM Systolic Architecture

» Each PE performs multiplication and Kulisch accumulation
» Intermediate results are stored in the Kul buffer

» Result transformed to a BM format

o
, A buffer A buffer
e 2 A | 4 [ L
M ,_.E | fisaMaEq) | [T fisg.My.Eq)
Weight e Computing Computing
fish.MpEn 3 unit : unit
o = (eq.6) i (eq.6)
Kul buffer Kul buffer
(Psym) (Poyum)
OFM €| o = Ciil 4, *
2 B« —KulToBM «1—  «— KulToBM
= B
Emax < PEI PEI
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. Accuracy

M4 competition dataset

Benchmark M4 dataset
Dataset Yearly, Quarterly, Monthly,
NBEATS accuracy (SMAPE loss) comparison Daily
. Training Loss mean absolute percentage
error(MAPE)
20 Validation Loss symmetric mean absolute
percentage error (SMAPE)
15 12 9212'97 12.45 12.4 :
: 12.28 12.26 Batch size 1024
10
528 5
> i — pil
MAPE =
i P2
0 (5)

Yearly Quarterly Monthly Daily _ﬂ:

200
SMAPE = Z 0 | W

W FP32 BM8 mINT8

where [; is the label in time step ¢, and p; is the prediction in
time step .

Accuracy of BM8 is similar to FP32

49
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- Resource Utilisation

NBEATS inference accelerator resource consumption

16.68%
D5sP 4.17%
B 156%
0
URAM 1.25%
Bl 1=0%
42 82%
BRAM 18.45%
I 15.67%
4.94%
REG 1.20%
B 159
7.66%
LUT 1.74%
. 25
0.00% 5.00% 10.00% 15.00% 20.009% 25.00% 30.00% 35.00% A0.009% 45.00%

FP16 mINTE mBME

Area of BM8 is similar to INT8 but smaller than FP16
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Inference Performance

NBEATS inference accelerator performance and power consumption

Power|W)

Peak Performance(GOPS)

Latency{ms)

Frequency|{MHz)

22,674
21.97
21.44

30 100

150

FPl6

NT8

182
282
277
354
228
232
200
0
300
200 250 3 50

BME

BMS8 performance and power is close to INT8

400
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NBEATS Training Accelerator Architecture

zradient

o

SGD 1 ouffer [Y
VW : J'!'L-; .'-"'.'i
* g > GEMM + L
IM T RELU/ARELL

» M buffer = Cvi = | buffer
Label | T 0 buffer | ——
—»  Loss VecADD
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: Mixed-precision Block Minifloat Training
ebiass || Input Matrix A (BM format) |
CTiE= ; ; ]

f(saika Maika ai-k) f(sbkjﬂ Mbkj’ Ebkj)

£ I I I l
Minifloat Minifloat = ~ PE [ 1 PE (L1} PE (L1 PE M1
To Fixed To Fixed E_::
< " " " i
5 | PE MM PE HOH PE HOH PE HO
= ! ! ! !
P | = PE L] PE L1 PE L] PE H]
>>Ka >>Kb Find Maximum |
! ! ! !
ebias & I 2L I ' k i ! Il
B adjust - Mormalization |
v | 1 1 l
Normalization ,
P ‘ Output (BM format) ‘
BM MAC unit (PE) BM GEMM array
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< NBEATS Accuracy (Preliminary)

» Dataset: M4-Yearly, validation loss: SMAPE loss, block size: 64

weight activation error gradient
B|\/|4(1) 14.471649 BM<2,1> unsigned BM<0,3> BM<0,3>
BM<0,4>
B|\/|4(2) 14.463654 BM<2,1> unsigned BM<0,3> FP32
BM<0,4>
BFPS8 12.914178 BM<0,7> BM<0,7> BM<0,7> BM<0,7>
BMS8 12.939716 BM<2,5> BM<2,5> BM<0,7> BM<0,7>

FP32  12.924581
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Chuliang Guo




THE UNIVERSITY OF

SYDNEY

Motivation

Why might we want to do transfer learning at the Edge”?

» Private and secure

- No personal information uploaded to cloud
» Adapt to changing conditions

- To deal with non-stationary data
» Size, weight, and power (SWaP)

- Converge to a good solution faster through pretraining

56
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CNN Training Workflow

» Back-propagation using SGD

— 3X workload of inference

Layer i Layer i+1
Activation P Activation— ++ — Out label
Forward
<
Weight @ ~- -
eig § Arbitrary stride Conv (Forward) Transposed Conv (Backward)
Error @ Error + ...+ FError Backward
Gradient ——D) é@
Gradient generation
69‘— Weight
Weight :
g Weight update Dilated Conv (Gradient Generation)

Fig. 1 CNN training workflow: (1) Conv in forward path, (2) transposed
Conv in backward path, (3) dilated Conv in gradient generation, and (4)
weight update.

Fig. 2 Non-unit stride Conv, transposed Conv, and
dilated Conv [1]

[1] Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016)




THE UNIVERSITY OF

<5 SYDNEY ResNet20/VGG-like accelerator

» Layer-wise CNN blocks mim pr——
— Unified bm(2,5) representation EM8 Unified LS "
- Non-unit stride Conv support e ;
- Simplified mult/add/MAC eLE I (Con) addition
- Fused BN&ReLU § % Activation copies & ReLU masks

» Main blocks
- Unified Conv

Dilated
Conv block

Errors .
B T oy lock 0P bfer
Conv block Ofmap buffer k
8

’E E PE array
€ £ (Transposed
el =4 Conv)

H Zyng SoC I
1
Control
logic
!

PE array

- Conv & transposed Conv .| 12 ] O Con)| ..
Bllg| O
_ . § - 5 } Errors | Gradients
Dllated Conv § % ::cn"r:icou:
Errors & velocities | Updated weights

l

- Weight kernel partition

Fig. 3 Overall architecture of the generic training accelerator for
layer-by-layer processing. BN and RelLU are fused.
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< CIFAR-10 Training from Scratch

» Shortcut addition after BN and RelLu functions (enabling fusing)
» Unified bm(2,5) for activations, weights, errors, and gradients (simpler HW)

» Full precision accuracy with these changes

Fig. 4 Modifications to basic building block of ResNet20 Tab. 1 Top-1 accuracy on CIFAR-10 and SVHN.
and VGG-like.
] | .

Conv 3x3 Model Precision (FP/BP) | CIFAR-10 Acc | SVHN Acc

---------- FP32 86.64% 92.45%

. — BFPS 85.65% 92.07%

[ RelU ) (Conv ix1) bm(2,5)/bm(4,3) 86.52% 92.51%

bm(2,5) 86.54% 92.55%

|:> r FP32 90.27% 94.98%

BN , BFPS 87.52% 90.37%

X ; ResNe20 | 1 1n(2,5)bm(4,3) 89.46% 95.51%

N, bm(2,5) 89.87% 95.60%

MaxPool
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Transfer learning application

— Channel tiling accelerator Source dataset Source labels

Conv
— Updating last several Conv & o - arplane.
FC c. @ . FC . automobile

« Shortened back-propagation . B o ship

truck
Pre-train model
* Reduced BRAM for iparameters
aCtlvatIOI’]S Target dataset Target labels

» Faster convergence B | Fine-tuning | dolphin
| ﬁ m E T | :?::cor

: software- fp32
3t A

software + channel tiling- fp32 | 1 ba— b
- hardware- bm(2,5) CIFAR-10
£25) hardware + transferred- bm(2,5) | Frozen
£
£ 2r
[
S15¢
D
z
S qL
v

05 Fig. 8 Transfer learning example from CIFAR-100 to CIFAR-10.

0 10 20 30 40 50
iterations
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Resource and Power

TABLE III
RESOURCE UTILISATION OF AND POWER THE RESNET20 ACCELERATOR
(WITH THE STATIC POWER OF 30W).

CLB LUT DSP BRAM | Vivado(W) PPS(W)
Full update | 28824 166502 686 1171 8.714 35
6 Conv+FC | 25589 161129 685 671 T.725 34
2 Conv+FC | 21340 129453 621 571 6.779 34
TABLE IV

RESOURCE UTILISATION AND POWER OF THE VGG-LIKE ACCELERATOR
(WITH THE STATIC POWER OF 30W).

CLB LUT DSP BRAM | Vivado(W) PPS(W)
Full update | 20688 119086 614 505 6.824 34
3 Conv+FC | 20489 119740 613 325 6.499 34
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ResNet20: Full update.

FP

BP System Ops

Total

0 0.5 1 1.5 2 25 3 35
Latency (ms)

VGG-like: Full update.

BN
FP

BP System Ops

Total

0 0.5 1 1.5 2 25 3
Latency (ms)

ResNet20 on SVHN: 6 Conv + FC update.
BN

FP
BP System Ops

Total

0 0.5 1 1.5 2 25
Latency (ms)

WVGG-like on CIFAR10&SVHN: 3 Conv + FC update.

FP
BP Systern Ops

Total

Latency (ms)

Latency Breakdown

ResNet20 on CIFAR10: 2 Conv + FC update.

BN
FP
BP System Ops
Total
0 0.5 1 1.5

Latency (ms)
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. Summary

= Low-precision formats have wide applicability for inference and
training in Edge applications
= Doesn’t necessitate accuracy reduction

= Faster Training is possible using BM
= Fewer bits — important for memory-bound
= Narrow exponents — denser MAC in compute-bound

What are the applications?

64
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