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The Leading Development
Platform for Edge ML




Qualcomnm
Al research

Advancing Al
research to make
efficient Al ubiquitous

Power efficiency Personalization Efficient learning

Model design, Continuous learning, Robust learning
compression, quantization, contextual, always-on, through minimal data,
algorithms, efficient privacy-preserved, unsupervised learning,
hardware, software tool distributed learning on-device learning

A platform to scale Al
across the industry

Qualcomm Al Research is an initiative of Qualcomm Technologies, Inc.
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Accelerate Your Edge Compute

SYNTIANT

. ~ Maklngv\Edge Al A Reality *
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Renesas is enabling the next generation of Al-powered solutions
that will revolutionize every industry sector.
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AHEAD OF WHAT'S POSSIBLE™
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Easily deploy your
tinyML solutions with
Arduino Pro

arduino.cc/pro

['.\ Made In Italy]




© 2022 Arm

Powerlng tinyML Innovatlon

',.,~Arm Al Virtual Tech_

Talks

The latestin Al trends technologles & best
- practices from Arm and our Ecosystem
- :Pa'r‘t-ners.

-Demos, code examples, workshops, panel

. sesslonsand much more' ..

| | FortnlghtIyTuesday @ 4pm GMT/8am PT

Find out more:
- www.arm.com/techtalks -




Decarbonization | . pigitalization

Driving decarbonization and digitalization. Together.

Infineon serving all target markets as -
Leader in Power Systems and loT (I"fineon

www.infineon.com
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STMicroelectronics provides extensive
solutions to make tiny
Machine Learning easy
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www.st.com/al
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Join Growing tinyML Communities:

14.5k members in
47 Groups in 39 Countries

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

4k members

&
11.6k followers

OftsEn

The tinyML Community
https://www.linkedin.com/groups/13694488/
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Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)
www.youtube.com/tinyML

£ YouTube

gL tymL 9.3k subscribers, 558 videos with 325k views

4.33K subscribers
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FOUNDATION

tinyMLEMEA
Innovation Forum

4

June 26 -28, 2023
Amsterdam

EMEA 2023
https://www.tinyml.org/event/emea-2023

More sponsorships are available: sponsorships@tinyML.org
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Slides & Videos will be posted Please use the Q&A window for your

tomorrow questions
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Haise Hand

tinyml.org/forums youtube.com/tinyml
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Sumit J Darak

Dr. Sumit J Darak received an Engineering degree from Pune
University, India, and PhD from NTU, Singapore, in 2007 and 2013,
respectively. He is an Associate Professor with [lIT-Delhi, and SoC
Consultant with Apexplus Technologies, Hyderabad, India.

His research interests include the design of efficient synthesizable
algorithms for wireless, radar, and artificial intelligence (Al)
applications and mapping to reconfigurable and intelligent
architectures.



Algorithms to Architecture
Lab, IIIT Delhi
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CloudLab: Remote Hardware Access

Two Directional Signals
Four Antenna Sparse Array

L A i P
7 » i "“ 4 = | | Decision Making Policy
L e
. d g““ . . LAN Cable

........................ oo 7

e || |
Algerithms to Architectare INFORMATON TECHNO S Ul Inference time : 15.186 ms  Inference time : 2.046 ms
COMSNETS 2022 Best Thesis Award Best Paper Award in AIML Systems 2021

ITIT Delhi 2022 Best Thesis Award

Other Awards: VLSID 2023 Design Contest Runner-up, Qualcomm Innovation Fellowship
(2022), VLSID 2022 Design Contest Winner, 2021 IIITD Research Excellence Award, Second-
Best Poster Award in COMSNETS 2019, Young Scientist Paper Award in URSI 2017, National
Instruments (NI) Academic Research Grant (2017, 2018)

Air-to-Ground Communication in L Band:
Second Best Paper Award, IEEE DASC 2017




Algorithms to Architecture Lab, IlIT Delhi
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« 14-Day Summer school on FPGA Design Flow * VLSI ReVisited: from Analog to Digital
* Video game design using Verilog * July 3-July 28, 2023 (online)

e July 6-July 20, 2023 (Offline)
e Contact: sumit@iiitd.ac.in

Digital Circuit Design
(Design High Speed Low Power
Digital Circuits and Memories)

I I If) ;ee;g_ 9?299 = SORT Digital System

: Analog Circuit
Design

Design

ECES73: Advanced Embedded IIITD_ECE573_AELD: Lab Introduction iz erocessing v P i BRI
5 . erilog and High Leve o 2
Logic De5|gn (AE LD) = Algorithms to Architecture IIIT Delhi Synthesis (HLS)) v . Amplifier using CMOS)
Dr. Sumit J Darak ¥ ReV|s Ited
Associate Professor, ECE, IIT Delhi 2023
=— SORT 5
Computer Architecture ASIC Design &
ECE270: Embedded Logic Design e oo, L@D_T_Part_1 : Introduction to Vivado & i & SOC , Verification
(E LD) — ©wmo #iiitdelhi #fpga #verilog (Hardware-Software | (Design a Chip - RTL to GDS

imization usi — Flow)
m Algorithms to Architecture IlIT Delhi Ll —

~
’

I Lab_1_Part_2 (Encoder using Verilog)
gorithms to Architecture IIIT Delhi @ Algorithms to Architecture, ECE, IIIT Delhi

”lT D |h ECE27O = m @algorithmstoarchitectureii1l574 973 subscribers 205 videos
elni . ‘
. . / ,% ’, Lab: Algorithms to Architecture
Embedded Logic Design " Lab.2_Part_1 (Adder/Multiplier using s to Are
et T s L T D M S | — T V10 and remote server)
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* Brief Introduction

v Edge Computing

v’ Hardware Software Co-design

v’ Intelligent and Reconfigurable Architecture
 Multi-Armed Bandit Algorithms and Architectures
e Discussion: Results and Future Works

 Work credits: S. V. Sai Santosh (Research Intern, IlIT Delhi)
Detailed handouts and source codes: https://github.com/Sai-Santosh-99

Video: https://youtu.be/1WOpdyr7cTU
* Publications: IEEE ISCAS 2020, IEEE TCAS-II, IEEE TII, IEEE OJCAS, and IEEE TNNLS
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Cloud resources are LIMITED

208

200
178

S. dollars

150 146

114

Market in billion U.

100 87
78.42

5861

50 40.96
2535)
15.08
5.82 8.68

0

2008 2009 2010 201 2012 2013 2014 2015 2016 2017 2018* 2019* 2020*

https://www.statista.com/statistics/510350/worldwide-public-cloud-computing/

* Other than privacy, when the data is
transferred outside your network, it is
always susceptible to cyber attacks.

* Data centres are NOT green

* Edge Computing is one alternative

Cloud Computing Market

Amazon workers listen to
Alexa recordings - change these three
settings NOW

20 Feb 2020, 16:04 | Updated: 21 Feb 2020, 15:39

loT Devices
WFH

Industry 4.0

OOOOOOOOOO

Alexa can hear and record what is typed in nearby devices,
study finds

. Aditya Saroha
>

htts://www.inde_.

tech/news/g ooi A



https://www.statista.com/statistics/510350/worldwide-public-cloud-computing/
https://www.independent.co.uk/life-style/gadgets-and-tech/news/google-home-recordings-listen-privacy-amazon-alexa-hack-a9002096.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/google-home-recordings-listen-privacy-amazon-alexa-hack-a9002096.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/google-home-recordings-listen-privacy-amazon-alexa-hack-a9002096.html

3GPP TSG RAN Rel-18 workshop
mnic Meeting, June 28 - July 2, 2021
F a Item: 4.3
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Qualcomm

RWS-210024

Interface

China Academy of Telecommunication Technology =

3GPP TSG RAN Rel-18 workshop
ELECTRONIC MEETING, JUNE 28 - JULY 2, 2021
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3GPP TSG RAN Rel-18 workshop
Electronic Meeting, June 28 - July 2, 2021

Motivation for AI/ML for
PHY enhancements

43
Ericsson

Agenda item:
Source:

=
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3GPP TSG RAN Release 18 Workshop
28th June - 2 July 2021

RWS-210373

Al/ML enabled RAN and NR Air
Interface

Agenda Item: 43

Source: Intel Corporation

Document for: Discussion
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ADAS: THE CIRCLE OF SAFETY

I long-Range Radar I Short/Medium-Range Radar
- Adaptive Cruise Control - Cross Traffic Alert
- Rear Collision Warning

I LDAR

Emergency Braking B Ultrasound

Pedestrian Detection Park Assist

Collision Avoidance Park Assist/

Surround View
Cameras

~Traffic Sign Recognition Suround View
Lane Departure Warning
Park Assist
Surround View Rear Collision
Warning

Traffic Sign
Recognition

Lane Departure
Warning

Cross Traffic
Alert Surround View

Adaptive
Cruise Control

Deep-Space Optical Tahscomer (LT
. - 4W, 22 cm dia.

Communications

(DSOC)

Ground Laser Transmitter (GLT)
Table Mtn., CA
1m-OCTL Telescope (5 kW)

Ground Laser Receiver (GLR) m
A Dee

Palomar Mtn., C.
5m-dia. Hale Telescope

p Space Network
(DSN)
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ARM Processor Application Specific Logic

ARBITER TI
ARM7TDMI DECODER
sMC RADIO ADC ﬁ
TIC I/F

< AHB > BRIDGE <j APB > SHARED
SPEECH
J C MEMORY V=
CONTROLLER
POWER &

DMA CLOCK
CONTROL

LMC
MgggH GPIO PIC TIMERS UART UART ACIl USB “

SHARED
PLL MEMORY
CLOCKS

1]

$

0 C 0 C 0 C

Low-speed I/O and Support Logic

Picture source: http://www.ecs.soton.ac.uk/, SoC Advance design Technique
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TALKS

o Scalability

 Advantages:

 Higher performanceand sl ha
high Power efficiency

* Lighter footprint

* Higher reliability

* Low cost . Lower Powe
Challenges: Application it . ngheC: é Lower Cost
Specific, Less flexibility, High '"'t€9ration an

Performance

design complexity
Expectations from upcoming
applications: Scalability and
Flexibil Ity Types of Headache

Migraine Hypertension Stress

¥ v

vvvvvvvvvvvvvvvvvvv

Credits: ARM Univ. Prog.
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5 F
external links / ™\ external links / N I,/" ASIC/FPGA Y
ASIC FPGA
U - -
\ / .
Programmable Logic
MWM;;\ “éﬁhﬁatbrﬁn9
FPGA = SoC

DUC # |#{ RF-DAC
DUC 4 |#{ RF-DAC

—t

A/?CH/TECTU,?/_-'

Programmable P bl ; / ,'
Logic P ’09[%’2;:3 - J . Core Fabrjc
APSOC MPSoC RFSOC

Heterogenous All Programmable SoC

Programmable

Logic J

Zynq Book by Xilinx




,  Hardware Software S
w5 Co-design (HSCD) ‘

Design Specifications
+

Design Formulation

Specification

/
Design Entry

[ Systom Design ) Hand-drawn schemftics, VHDL, Verilog
Sotware 7 Raréwars
icks = ... Behavioral Simulation
e !

) Logic Synthesis

. ¥

o BRI - Post Synthesis Simulation

~lE T }

Mapping, Placement, Routing
¢

d Final Testi ‘ ‘

ASIC / SoC FPGA

(hardware/software co-trigger)




Reconfigurable HSCD

rAN Y/ £~
| | | | | |

e e SN S

1

4

)

)

» Lower power consumption due to fewer resources
» Larger and complex design can be efficiently mapped on smaller
FPGAs
** Direct cost and operation cost savings since smaller and cheaper
FPGA device is needed
» Feature richness and Upgradability

4

)

)

4

)

)

Support for Reconfigurable/Adaptive architecture ???




Intelligent Reconfigurable HSCD
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Multi-Armed Bandit Algorithms
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Introduction: MAB Algorithms

webcast

* Online learning algorithms with good analytical tractability

* Each arm gives different mean rewards/rate

* Goal: Maximize the expected sum-rate

* Exploration-exploitation trade-off

* Applications: Website advertise, Wireless networks, Neural networks,
Healthcare

* Simple strategy: User selects the “top arm.”

e But arm statistics are unknown ©®

A. Slivkins, “Introduction to multi-armed bandits,” in Foundations and Trends in Machine Learning, vol. 12, no. 1, 2019, pp. 1-286.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit problem,” Machine Learning, vol. 47, no. 2,
2002.



Introduction: MAB Algorithms

* Simple Strategy: User selects the “top arm.” But arm statistics are unknown
* The reward of an arm i is stochastic with distribution v; and mean u;
 Rewards are |ID across time and arms

* Using policy m, algorithm select the arm 7, is time slot ¢.

* Performance metric: Regret

T
Rp(r) =T maxpu;, —E !Z fim,

1€[N]

=1
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© Introduction: MAB Algorithms

webcast

* Policy 1: Select each arm T/K times (or select arms K =95 actions with means

randomly) p1 =0.3
» Explore each arm equally p2 = .35
* Policy 2: Choose the empirical best arm in each round pz = .78
» Exploit the best arm fpa = .8
* Policy 3: Explore for the first €T time slots and then :;ZZ N p5 = -5
exploit o I T = 10000
» Explore then Exploit 7950 Bt ten Baplor
* Too much exploration or ‘premature’ exploitation not ™ T .
good - :
» |If exploration high, suboptimal arms selected often s
» Premature exploitation may miss optimal arm 7700
7650
How to find optimal €7 7600
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P = max; (k) fhi Aj = " — = (p1, 42, .., b
" = arg max (i A =min; ;- A

Lower Bound |[Lai & Robins 1985|: For any ‘uniformly efficient’ policy m on p

log T’
Rr(n) 2 Y A,
2 ; d(ui, u”)

where d(u;, u*) is KL divergence given by
dWmu)=uﬂ%;;+ﬂ—u0bg

(1 — pi)

(1—p*)

Problem independent bound |Cesa-Bianchi and Lugosi 2006]: For any policy ,
there exits a distribution of on arm rewards such that

1
D



Optimism in the Face of Uncertainty
(OFU)

e For each arm 7 build a confidence on its mean estimate

1.2

Zi(t) = [LCB;(1), UCB(1)]

LCB: Lower Confidence Bound N -
UCB: Upper Confidence Bound | { f J;
k2

0.4 1

0.2 1

e Take the current upper bound on the estimate
as the true value (optimism)

0.0

= UCB;(t
™. = arg max (t)
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N
alogT
UCB;(t) = i (t
® u()+\/ o
. J
l. Input K, 1. a0 > 2 e Problem dependent: (bounded support)

Rr(UCBL) < O(Y, ;. '%T)

2. Play each arm once
e Problem independent:

3. Fort=K+1,K+2,...t Rr(UCB1) < O(y/KTlog(T))

4.  Play m; = UCB;(t — 1) and observe reward
5.  Update pull count and mean estimate of

6. End



KL-UCB

4 )

UCBZ(t) = mqax {d(,&z(t), q) < logt +£t(;)g(logt) }

Z;(L-UCB (t) C I;JCBl (t)

e Problem dependent: (bounded support) |
Rr(KL-UCB) < O(3, ;- A _JogT ) (optimal!)

id(:u’i’:u*)

e Problem independent:

Rr(KL-UCB) < O(y/KTlog(T))
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1| ... MAB: Frequentist or Bayesian?

* The frequentist modeling-based UCB and KLUCB algorithms assume
the mean reward of an arm is proportional to the average reward in
repeated plays of a given experiment.

* Bayesian modeling-based TS algorithm assumes the mean reward of
an arm is proportional to a degree of belief that the arm is optimal.

* These beliefs are updated based on the past observations via Baye’s

rule that takes a prior belief as an argument and returns a posterior
belief for a given likelihood.
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m& = MAB: Frequentist or Bayesian?

webcast

e Since the arm statistics are unknown, the uncertainty about arm optimality is
modeled as probabilities and the arm with the highest probability of being
optimal under the posterior distribution is selected.

* In the MAB, posterior belief becomes a prior in subsequent time slots, and
the distributions which exhibit such behavior are known as conjugate prior.

e Beta distribution is a conjugate prior for Bernoulli likelihood function.

g T, (t) T, (t) 5

vi (sl Xi1, Xi2, - -+, Xit)) = Beta Y Xis, Tit)— > X,
\ s=1 s=1 ')




Thompson Sampling
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webcast
i T; (t) T; (t) x
v; (Wil X, Xio, - Xit@)) = Beta E Xis » Ti(t) — E X s
\ s=1 s=1 ')
| No. of success | | No. of failures |
o Input: K, T | |

o Set 5, =0,F;, =0 Vi € [K]
e Problem dependent: (bounded support)

Ry (TS) < O(Y 450 A 122 L5)

:uihu*)

e Fort=1,2,...,T
e For each i € [K], draw fi;(t) ~ Beta(S; + 1, F; + 1)

e Play arm 1, = arg max i;(t) and observer X, ; e Problem independent:

ielK) Rr(TS) < O(y/KTlog(T))
° Update Sm- = Sm + ert,t and F7rt = Fm +1- X?Tt,t

e End



MAB Algorithms
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200 ~

1 =(0.4,0.3,0.5,0.2,0.1)

et
[T}
i
o
& 100
50 |
-#- UCB1
—-*- KL-UCB
0- —®- Thompson Sampling
T T T T T T
0 2000 4000 6000 8000 10000
Rounds
Number of Arm Pulls by UCB1 in round t = 20 . N
2000 y Number of Arm Pulls by KL-UCB in round t = 20 Number of Arm Pulls by Thompson Sampling in round t = 20
2000 2000
1750 -
1750 1750
1500 -
1500 1500 A
1250 -
1250 - 1250 A
1000 -
1000 - 1000 A
750
750 750 -
500
500 500 -
250
250 250 -
5 4 4 5 2
0 T T T T T 3 4 4 2 2 9 4 1_ 3 3
Arm 1 Arm 2 Arm 3 Arm 4 Arm 5 0 0

T T T T T
Arm 1 Arm 2 Arm 3 Arm 4 Arm 5
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Arm 1 Arm 2 Arm 3 Arm 4 Arm 5
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1= (0.4,0.3,0.5,0.2,0.1)

Confidence Interval of Arms for UCB1 in round t = 100

1.0 A

0.8

0.6

0.4

0.2 4

0.0

1.2

MAB Algorithms

Confidence Intervals of Arms of KL-UCB in round t= 100

1.0+

0.8

0.6 1

0.4 4

0.2

0.0 1

200 -
150 |
Ll
Q
| -
o
& 100 A
50 1 —
—-#- UCB1
-#%- KL-UCB
04 —®- Thompson Sampling
T T T T T T
0 2000 4000 6000 8000 10000
Confidence Interval of Arms for TS in round t = 100
1.2
1.0 71— —_ —
0.8 |
0.6 -
L 2
04 @ ®
0.2 |
A d ®
0.0 —— — —— — ——
_0.2 T T T T T
Arm 1 Arm 2 Arm 3 Arm 4 Arm 5
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Algorithms | Advantages Disadvantages
UCB 1. Easy to implement 1. Has a tuning parameter
2. Distribution independent
KL-UCB 1. Asymptotically optimal 1. Computational intensive
2. Good empirical (need to solve a convex
performance problem in each round)
3. Distribution independent | 2. Hard to implement (in
Hardware)
Thompson 1. Asymptotically optimal 1. Distribution dependent
Sampling 2. No tuning parameter 2. Hard to implement in
3. Good Empirical hardware
performance




UCB Architecture on SoC

webcast

DDR DDR Memory  PS ray i
Memor# Controller AXI AXI Decoupler MAB Init and
I > forpPR [€ | Parameter Update
U | ARM Cortex N _
A A9 Core #0 T
Desktop<€> p — E RR1 RR2| DPR RRK
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UCB Reconfigurable Architecture
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e Selection of appropriate UCB
algorithms is not challenging
since each one is used in
specific application.

 Forinstance, UCB is used for
low latency, UCBV is used
when the arm with optimal
mean and low variance
needs to be selected and
UCBT offers lower regret
than UCB but incurs higher
latency.
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>, Thompson Sampling Architecture
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e Bayesian approach compared to frequentist approach based UCB algorithm
e Offers better performance than UCB but direct hardware mapping is not trivial

T;(t) T; (1)
Vi (Mi|Xi,17 X’i,27 I 7Xi,T7;(t)) = Beta Z Xi,S Y T’L(t) o Z Xias
s=1 s=1

e Distribution dependent (Note: Type of distribution may not known)
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* Direct mapping of Beta function on SoC does not exist and its computationally complex.
* Instead of directly mapping, we develop its approximate architecture.
* Proposed Idea: Generate T;(t) number of random numbers for arm i. Sort them and

select the (25;1 Xl-,S) random number.

* For generation for random numbers, we use existing pseudo-random number generator
(PRNG)
Ti(t) T;(t)

vi (il X1, X2, .., Xi 1)) = Beta Z Xis o Ti(t) — Z Xi s
s=1 s=1

S. V. Sai Santosh, and S. J. Darak, “Multi-armed Bandit Algorithms on Zynq System-on-Chip: Go Frequentist or
Bayesian?,” in IEEE Transactions on Neural Networks and Learning Systems, accepted in June 2022.
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* Proposed Idea: Generate T;(t) number of random numbers for arm i. Sort them and

select the (25;1 Xl-,s) random number.

* For generation for random numbers, we can use existing pseudo-random number
generator (PRNG)

* Drawbacks:
» Large number of random numbers to be generated in each time slot
» Number of random numbers to be generated increases with time
» Huge increase in sorting complexity with large number of memory read and write
» Huge memory requirement since precision of random numbers is critical for achieving
high accuracy

S. V. Sai Santosh, and S. J. Darak, “Multi-armed Bandit Algorithms on Zynq System-on-Chip: Go Frequentist or
Bayesian?,” in IEEE Transactions on Neural Networks and Learning Systems, accepted in June 2022.
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* Proposed Idea: Generate T;(t) number of random numbers for arm i. Sort them and

select the (25;1 Xl-,s) random number.

* For generation for random numbers, we can use existing pseudo-random number
generator (PRNG)
* Efficient Architecture:
» Efficient sorting via grouping random numbers in predefined ranges
» Grouping random numbers allows us to reduce the word length significantly
» Significant reduction in number of comparators
» Reduce the number of random numbers to be generated in each slot by reusing
previously generated random numbers.
» No need for separate random number generators for each arm.

S. V. Sai Santosh, and S. J. Darak, “Multi-armed Bandit Algorithms on Zynq System-on-Chip: Go Frequentist or
Bayesian?,” in IEEE Transactions on Neural Networks and Learning Systems, accepted in June 2022.
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S. V. Sai Santosh, and S. J. Darak, “Multi-armed Bandit Algorithms on Zynq System-on-Chip: Go Frequentist or
Bayesian?,” in IEEE Transactions on Neural Networks and Learning Systems, accepted in June 2022.
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@ 2 Which MAB Algorithms to use?

webcast

* In real applications, arm statistics may not be fixed to single distribution

* UCB algorithm has been shown to work well in any distribution

e TS algorithm changes depending on the underlining distribution and as
of now, architecture for Bernoulli distribution is available.

* However, right TS algorithm significantly outperforms UCB algorithm

* Can we design Intelligent architecture that can switch between UCB and
TS architectures?

* Proposed idea: Exploration-exploitation trade-off among UCB and TS
algorithm. We referred it as RI-MAB

S. V. Sai Santosh, and S. J. Darak, “Multi-armed Bandit Algorithms on Zynq System-on-Chip: Go Frequentist or
Bayesian?,” in IEEE Transactions on Neural Networks and Learning Systems, accepted in June 2022.
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m& ©  Conclusions and Future Directions

webcast

* For algorithms to architecture mapping, efficient hardware software co-
design and word length analysis is must.

* For next-generation applications, intelligent and reconfigurable
architectures are desired.

 MAB algorithms are widely used in wireless, neural networks, e-
commerce and health applications. Architectures for various MAB
algorithms does not exist.

e Extension for quasi-stationary scenario

* What happens when number of arms are large in numbers?
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