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tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

The tinyML Community
https://www.linkedin.com/groups/13694488/

19.6k members in
49 Groups in 41 Countries

4.2k members 
&

14.5k followers

https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/
https://www.linkedin.com/groups/13694488/
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tinyML YouTube Channel

for updates and notifications
(including this video)

www.youtube.com/tinyML

11.8k subscribers, 662 videos with 432k views 

http://www.youtube.com/tinyML
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https://www.wevolver.com/article/2023-edge-ai-technology-report

https://www.wevolver.com/article/2023-edge-ai-technology-report


Reminders

youtube.com/tinyml

Slides & Videos will be posted 
tomorrow

tinyml.org/forums

Please use the Q&A window for your 
questions



Swapnil Sayan Saha

Swapnil Sayan Saha is an algorithm development engineer 

at STMicroelectronics Inc. He received his Ph.D. and M.S. 

in Electrical and Computer Engineering from the University 

of California, Los Angeles in 2023 and 2021 respectively, 

and B.Sc. in Electrical and Electronics Engineering from the 

University of Dhaka in 2019. His research explores how 

rich, robust, and complex inferences can be made from 

sensors onboard low-end embedded systems within tight 

resource budgets in a platform-aware fashion. To date, he 

has published more than 25 peer-reviewed articles/patents 

and received more than 30 awards in robotics, technical, 
and business-case forums worldwide.
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Tiny machine learning
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Hardware and software suites that enable always-on, ultralow power, and 

on-device data analytics

Wildlife tracking

Micro-aerial vehicles

Batteryless cameras

Picosatellites

Enables applications that need to make 

“complex inferences” for “time-

critical” and “remote” applications from 

“unstructured data” independent of 

large systems.

Saha, Swapnil Sayan, Sandeep Singh Sandha, and Mani Srivastava. "Machine Learning for Microcontroller-Class Hardware: A Review." in IEEE Sensors 

Journal, vol. 22, no. 22, pp. 21362-21390, 15 Nov.15, 2022.



Tiny machine learning
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Hardware and software suites that enable always-on, ultra-low power, and on-

device data analytics.

Wildlife Tracking

Micro-Aerial Vehicles

Batteryless Cameras

Picosatellites

Enables applications that need to make 

“complex inferences” for “time-

critical” and “remote” applications from 

“unstructured data” independent of 

large systems.

Saha, Swapnil Sayan, Sandeep Singh Sandha, and Mani Srivastava. "Machine Learning for Microcontroller-Class Hardware: A Review." in IEEE Sensors 

Journal, vol. 22, no. 22, pp. 21362-21390, 15 Nov.15, 2022.

First generation efforts focused on squeezing standalone neural 

networks within the resource bounds of tinyML platforms



Challenge 1: obeying physics, rules, and constraints

Administer injection Administer food Wash hands

Administer injection Administer foodWash hands

Physics matter more at the edge; standalone neural networks cannot assure that the learned distributions 

obey the rules and physics of the underlying system

Goal: land the quadrotor as 

fast as possible

Quadrotor crash due to unsafe bank angle 

caused by a neural flight controller. 

Invalid and valid sanitary protocol sequence in a 

nurse care setting for complex event processing. 

Goal: guide a nurse perform correct 

action sequences

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).
28
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Additional routines (called symbolic programs) must be jointly 

deployed with the neural network



Challenge 2: synthesizing platform-aware 
neurosymbolic programs

Fitting neural and 

symbolic routines 

within resource limits

Dealing with mixed and 

discontinuous 

parameter spaces

Dealing with runtime 

faults due to more 

moving parts

Finding proxies for so 

many program 

combinations

Arbitrary cost function 

formulation

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).
30
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Finding the optimal synergy between neural and symbolic 

components within the tight resource constraints is challenging



Neural

Symbolic

Neurosymbolic

architecture search

Solution: Neurosymbolic auto tiny machine learning

32Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).



What is neurosymbolic artificial intelligence? 

Non-parametric

(flexible and 

scalable)

Interpretable

Data efficient

Physics and context-

aware
Robust

Performant

Neurosymbolic AI

Aerial object detection Optical flow

Self-navigating 

surveillance quadrotor

A program containing neural and human-readable (symbolic) code

33Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).



What is neural architecture search? 

Optimization 

function
Search space

Search 

algorithmCandidate

model

Score

Most performant model
*

Automatically find the most performant neural network architecture from a 

hyperparameter space within some constraints

34
Saha, Swapnil Sayan, Sandeep Singh Sandha, and Mani Srivastava. "Machine Learning for Microcontroller-Class Hardware: A Review." in IEEE Sensors 

Journal, vol. 22, no. 22, pp. 21362-21390, 15 Nov.15, 2022.
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Saha, Swapnil Sayan, Sandeep Singh Sandha, and Mani Srivastava. "Machine Learning for Microcontroller-Class Hardware: A Review." in IEEE Sensors 

Journal, vol. 22, no. 22, pp. 21362-21390, 15 Nov.15, 2022.

We adopt Mango, a black-box Bayesian optimizer, which can efficiently 

handle mixed and discontinuous search spaces



Gradient-free Bayesian optimization: surrogate function

36

A surrogate function approximates an optimization function, 

e.g., gaussian process

Gaussian process provides tractable assessment of 

uncertainty under data scarcity

Non-parametric model using mean µ and Matern kernel 

function k over the search space Ω 

Two components: surrogate function and acquisition function

Sandha, Sandeep Singh, Mohit Aggarwal, Igor Fedorov, and Mani Srivastava. "Mango: A python library for parallel hyperparameter tuning." in IEEE 

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3987-3991. IEEE, 2020.

Sandha, Sandeep Singh, Mohit Aggarwal, Swapnil Sayan Saha, and Mani Srivastava. "Enabling hyperparameter tuning of machine learning classifiers in 

production." In 2021 IEEE Third International Conference on Cognitive Machine Intelligence (CogMI), pp. 262-271. IEEE, 2021.



Gradient-free Bayesian optimization: acquisition function

37

An acquisition function selects the next promising set of 

points to sample

Mango adopts Monte Carlo sampling with upper confidence 

bound, using adaptive exploration factor β

First term: goodness of sampled point (exploitation); 

second term: uncertainty of sampled point (exploration); 

does not get stuck in local optima

Two components: surrogate function and acquisition function

Sandha, Sandeep Singh, Mohit Aggarwal, Igor Fedorov, and Mani Srivastava. "Mango: A python library for parallel hyperparameter tuning." in IEEE 

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3987-3991. IEEE, 2020.

Sandha, Sandeep Singh, Mohit Aggarwal, Swapnil Sayan Saha, and Mani Srivastava. "Enabling hyperparameter tuning of machine learning classifiers in 

production." In 2021 IEEE Third International Conference on Cognitive Machine Intelligence (CogMI), pp. 262-271. IEEE, 2021.



Gradient-free Bayesian optimization: acquisition function
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An acquisition function selects the next promising set of 

points to sample

Mango adopts Monte Carlo sampling with upper confidence 

bound, using adaptive exploration factor β

First term: goodness of sampled point (exploitation); 

second term: uncertainty of sampled point (exploration); 

does not get stuck in local optima

Two components: surrogate function and acquisition function

Sandha, Sandeep Singh, Mohit Aggarwal, Igor Fedorov, and Mani Srivastava. "Mango: A python library for parallel hyperparameter tuning." in IEEE 

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3987-3991. IEEE, 2020.

Sandha, Sandeep Singh, Mohit Aggarwal, Swapnil Sayan Saha, and Mani Srivastava. "Enabling hyperparameter tuning of machine learning classifiers in 

production." In 2021 IEEE Third International Conference on Cognitive Machine Intelligence (CogMI), pp. 262-271. IEEE, 2021.

Adaptive exploration factor finds near-optimal values at the boundary 

of violating deployability constraints with 90% theoretical guarantees



Formulating the neurosymbolic optimization function
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GP-UCB solves a non-linear program with constraints

Search space Ω contains both neural and symbolic 

hyperparameters, trainable weights, neural operators, and 

symbolic program atoms

Goal: construct a fault-free neurosymbolic program such 

that latency and error are minimized, while the memory 

usage is maximized within device memory limits

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).



Fast and guaranteed deployment: hard thresholding

40

To guarantee deployability and optimize at the execution level, we 

perform platform-in-the-loop search

If a model induces faults, we do not train the model; the search algorithm 

is penalized by a constant large number (hard thresholding)

Thanks to GP-UCB, the search algorithm is able to observe the small 

valid linear region where memory usage and accuracy are proportional 

Hard thresholding

Soft thresholding

Invalid region

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).
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If a model induces faults, we do not train the model; the search algorithm 

is penalized by a constant large number (hard thresholding)

Thanks to GP-UCB, the search algorithm is able to observe the small 

valid linear region where memory usage and accuracy are proportional 

Hard thresholding

Soft thresholding

Invalid region

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).

To guarantee deployability and optimize at the execution level, we 

perform platform-in-the-loop search

Platform-in-the-loop + hard thresholding = 

50% faster than proxy + soft thresholding



Implementing automatic platform-in-the-loop
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Neural 

backbones

Symbolic 

atoms

Search Algorithm

TensorFlow

Neural Parser

Symbolic Parser

Mbed RTOS

TensorFlow Lite Micro

Neural network .c and .h files

Symbolic .c and .h files

.c main file

Chosen 

backbone

Chosen 

atoms

Model candidate,

training API
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Python, GPU server

C/C++, microcontroller

Memory and latency measurement

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).



Comparing tinyML NAS strategies
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Method Search strategy Profiler Search space Optimization terms

SpArSe Gradient-driven Bayesian Analytical Conv2D Error, SRAM, flash

MCUNet Evolutionary (weight sharing) Lookup tables Conv2D Error, SRAM, flash, latency

MicroNets One-shot DNAS Analytical Conv2D Error, SRAM, flash, latency

µNAS Evolutionary (no weight sharing) Analytical Conv2D Error, SRAM, flash, latency

iNAS Reinforcement learning Lookup tables Conv2D (execution level) Error, flash, latency, volatile 

buffer, power cycle energy

UDC DNAS with exploration/exploitation Analytical Conv2D, pruning, quantization Error, flash

TinyNS Gradient-free Bayesian with 

exploration/exploitation

Platform-in-the-loop Any supported ML operator and 

symbolic atoms

Any scalar term

Operates on mixed and arbitrary parameter spaces and optimization function terms

Platform-in-the-loop guarantees deployability by taking execution level dynamics into account

Efficient over RL, DNAS, and evolutionary search algorithms; combines the best features of other 

search algorithms in one package

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).



MLPerf Tiny v0.5 inference benchmark (CIFAR10)
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Exceeds benchmark accuracy by 4.3%, outperforms baselines by 4.5%-17.5%

1.7x-7.7x lower convergence time than baselines

Platform-in-the-loop provides models that have 1.6%-5.5% higher accuracy and 

consumes 4.2x lower flash, while converging 2.3x faster 

Backbone: ResNet8

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).



MLPerf Tiny v0.5 inference benchmark – search space matters

45

Anomaly Detection (ToyADMOS): exceeds benchmark accuracy by 4%, outperforms 

OutlierNets by 6.3%, guarantees deployability over MbNetv2

Keyword spotting (Speech): incorrect backbone leads to suboptimal pareto-frontier, 

stressing importance of a search space containing several models

Backbone: 1D-CNN 

autoencoder

Backbone: TCN

Anomaly Detection Keyword Spotting

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).



Neurosymbolic AI taxonomy

46

1

2

3

4

5

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).



Symbolic neurosymbolic – problem formulation
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Symbolic search space: 2D hyperparameter matrix, with 

each row corresponding to the arguments of each function 

(binary mask)

A series of independent domain-engineered functions is applied on the input 

dataset X, followed by a single ML model

Neural search space: multiple model backbones, each 

considered for use at each step using an ordinal mask

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).



Example: co-optimizing features and a single backbone 

48

Application: gesture recognition using a temporal CNN; operates on handcrafted 

features

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).

Features

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-

Peak

FFT mean 

coeff.

Fundamental 

Frequency

Abs. Energy
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Application: gesture recognition using a temporal CNN; operates on handcrafted 

features

Microcontroller

(SRAM, Flash)

Features

ISPU 

(8,32)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-

Peak

FFT mean 

coeff.

Fundamental 

Frequency

Abs. Energy

F446RE 

(128, 512)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-

Peak

FFT mean 

coeff.

Fundamental 

Frequency

Abs. Energy

L476RG

(128, 1024)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-

Peak

FFT mean 

coeff.

Fundamental 

Frequency

Abs. Energy

F746ZG

(320, 1024)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-

Peak

FFT mean 

coeff.

Fundamental 

Frequency

Abs. Energy

L4R5ZI_P

(640, 2048)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-

Peak

FFT mean 

coeff.

Fundamental 

Frequency

Abs. Energy

Extracting all features is computationally intensive. TinyNS picks the most important features when resources 

are scarce to maximize accuracy

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).

Example: co-optimizing features and a single backbone 



Example: optimizing over multiple backbones 

50

Activity detection using earables Fall detection using earables

98-740x smaller, 3-6% more accurate models for human activity detection using earables over 

baselines

Activity detection under 6-12 KB of memory, fall detection under 2 KB of memory

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).



Neuro → symbol – problem formulation
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A single ML model operates on the input data, followed by either a single 

domain-engineered function or a program graph

Given a collection of logical, relational, arithmetic, and conditional 

operators, program decision trees can be synthesized conditioned 

upon a finite tree count and depth

Tree enumeration algorithm to generate all possible paths to 

Decision A and B; or optimize parameters of a pre-defined tree

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).



Example: co-optimizing neural detector and symbolic tracker  
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Constraint Flash Usage 

(MB)

Performance Neural hyperparameters Symbolic 

hyperparameters

MOTA IDF Kernel Size Stacks Head 

Convolution

Activations Rendering Confidence

None 

(handcrafted)

238 36.5 55.0 1 1 128 True 0.4 0.5

250 MB limit 238 36.1 54.6 1 1 150 True 0.3 0.4

500 MB limit 270 38.0 57.2 9 1 100 False 0.7 0.5

Achieves human-level performance (±1%) of program hand-tuned using 

hundreds of human hours in 3 GPU days

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).



Neuro ∪ compile (symbolic) – problem formulation

53

1. Add more regularizer terms in the NAS optimization 

function

Single ML model operates on the data, while the symbolic rules are expressed in 

two ways

2. Add physics metadata channel as additional inputs to the 

model

Saha, Swapnil Sayan, Sandeep Singh Sandha, Mohit Aggarwal, Brian Wang, Liying Han, Julian de Gortari Briseno, and Mani Srivastava. "TinyNS: 

Platform-Aware Neurosymbolic Auto Tiny Machine Learning." ACM Transactions on Embedded Computing Systems (2023).



Example: physics-aware neural inertial navigation
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❶ Velocity and magneto-centric DNN regresses velocities and uses magnetic North as an additional anchor point.

❷ A physics metadata module supplies latent information about whether valid translational movements have 

occurred.

❶ ❷

Physics Metadata 

Module

Position 

TrackerIMU Data Network 

Outputs

Position

❶

❷

Saha, Swapnil Sayan, Sandeep Singh Sandha, Luis Antonio Garcia, and Mani Srivastava. "Tinyodom: Hardware-aware efficient neural inertial navigation." Proceedings of 

the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, no. 2 (2022): 1-32.

Saha, Swapnil Sayan, Yayun Du, Sandeep Singh Sandha, Luis Antonio Garcia, Mohammad Khalid Jawed, and Mani Srivastava. "Inertial Navigation on Extremely Resource-

Constrained Platforms: Methods, Opportunities and Challenges." In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 708-723. IEEE, 2023.

(𝑣𝑥,𝑘 , 𝑣𝑦,𝑘) = 𝑦𝜃∗(ෝ𝒂𝑞:𝑞+𝑛
𝐼 , ෝ𝒘𝑞:𝑞+𝑛

𝐼 , ෝ𝒎𝑞:𝑞+𝑛
𝐼 , 𝑐𝑘(

𝐼ෝ𝒂))



Example: physics-aware neural inertial navigation
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Saha, Swapnil Sayan, Sandeep Singh Sandha, Luis Antonio Garcia, and Mani Srivastava. "Tinyodom: Hardware-aware efficient neural inertial navigation." Proceedings of 

the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, no. 2 (2022): 1-32.

Saha, Swapnil Sayan, Yayun Du, Sandeep Singh Sandha, Luis Antonio Garcia, Mohammad Khalid Jawed, and Mani Srivastava. "Inertial Navigation on Extremely Resource-

Constrained Platforms: Methods, Opportunities and Challenges." In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 708-723. IEEE, 2023.



Symbolic [neuro] – problem formulation
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Use Kalman filter theory to combine a noisy neural system model with noisy 

symbolic measurement updates

Separate neural and non-neural parts in Kalman propagate. 

Neural network provides a black box mapping

Use the linearized Jacobian of the neural network w.r.t the 

past state and inputs in the Lyapunov function

Saha, Swapnil Sayan, Sandeep Singh Sandha, Luis Antonio Garcia, and Mani Srivastava. "Tinyodom: Hardware-aware efficient neural inertial navigation." Proceedings of 

the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, no. 2 (2022): 1-32.

Saha, Swapnil Sayan, Yayun Du, Sandeep Singh Sandha, Luis Antonio Garcia, Mohammad Khalid Jawed, and Mani Srivastava. "Inertial Navigation on Extremely Resource-

Constrained Platforms: Methods, Opportunities and Challenges." In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 708-723. IEEE, 2023.



Example: neural-Kalman filtering

57

Method 

(1 Hz GPS)

Median Absolute 

Trajectory Error (m)

Median Relative 

Trajectory Error (m)

UKF-M GPS/INS 4.35 0.21

EKF GPS/INS 2.24 0.35

GPS only 1.89 0.40

Neural-Kalman (ours) 1.36 0.35

Application: Tracking agricultural robots using neural inertial navigation and GPS; neural network 

provides a model-free evolution of the robot dynamics

Neural-Kalman filter combines smoothness and short-term accuracy of neural networks with long-term 

precision of noisy GPS/GNSS updates under 1 MB of memory

Saha, Swapnil Sayan, Sandeep Singh Sandha, Luis Antonio Garcia, and Mani Srivastava. "Tinyodom: Hardware-aware efficient neural inertial navigation." Proceedings of 

the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, no. 2 (2022): 1-32.

Saha, Swapnil Sayan, Yayun Du, Sandeep Singh Sandha, Luis Antonio Garcia, Mohammad Khalid Jawed, and Mani Srivastava. "Inertial Navigation on Extremely Resource-

Constrained Platforms: Methods, Opportunities and Challenges." In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 708-723. IEEE, 2023.



Conclusion

58

Neurosymbolic tiny machine learning enables context-aware, physics-

aware, robust, interpretable, and performant edgeAI systems 

TinyNS automates the process of generating neurosymbolic programs for 

TinyML platforms

Enables a broad spectrum of new applications for wearables, robots, 

automotives, and environmental sensors



Try TinyNS: 
https://github.com/nesl/neurosymbolic-tinyml

https://github.com/nesl/neurosymbolic-tinyml
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