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● NAS research - Automatically generate better architectures than handcrafted models; benchmark accuracy on 
NAS Bench dataset & ImageNet

● NAS for TinyML - Automatically customize & optimize DNNs for  multiple constraints -  [accuracy, model size, 
SRAM usage (runtime memory), #MACs, latency, energy usage…]

Neural Architecture Search (~AutoML): Goals
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Neural Architecture Search (~AutoML): Goals

👂 NAS SOTA - Differential, one-shot NAS - DARTS & DARTS-based
✔ DARTS works out of the box - https://github.com/quark0/darts
✔ Default implementation single-objective - accuracy
✔ Difficult to get ready version that allows integration of my preferred objectives

👂 Heuristic / Sample based NAS are obsolete
✔ For searching tiny models the overhead is marginalized
✔ Easy to integrate preferred objectives 

👂 NAS for TinyML
✔ Large many-layered networks, complex connections not required
✔ Accurate multi-objective conformance, platform API support - highly required
✔ MCUNet V1 & V2, μ-NAS, Micronets… have their merits & demerits. We may often need  to tweak 

existing frameworks - understanding NAS helps

● NAS research - Automatically generate better architectures than handcrafted models; benchmark accuracy on NAS Bench dataset & ImageNet

● NAS for TinyML - Automatically customize & optimize DNNs for  multiple constraints -  [accuracy, model size, SRAM usage (runtime memory), #MACs, latency, 
energy usage…]

https://github.com/quark0/darts


6 

Today’s Agenda

📌 SOTA NAS research & TinyML 

📌 A naive method to generate  DNN

📌 Enhancing the method using Reinforcement Learning
📌 Other optimization techniques for sample-based NAS

📌 Gradient-based, one-shot NAS

📌 Take-home points 
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NAS Research & TinyML: Mainstream NAS Goals

🚩 Started with RL using RNN1 , Q-Learning2 to generate architecture

[1] Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, https://arxiv.org/abs/1611.01578

[2] Designing Neural Network Architectures using Reinforcement Learning, Bowen Baker et al., https://arxiv.org/abs/1611.02167

https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.02167
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🚩 Started with RL using RNN1 , Q-Learning2 to generate architecture
🚩 Next two big innovations were cellular search space3 and parameter sharing4

[3] Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph et al., https://arxiv.org/abs/1707.07012 
[4] Efficient Neural Architecture Search via Parameter Sharing, Hieu Pham et al., https://arxiv.org/pdf/1802.03268.pdf
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🚩 Started with RL using RNN1 , Q-Learning2 to generate architecture
🚩 Next two big innovations were cellular search space3 and parameter sharing4

🚩 Meanwhile Evolutionary5, Bayesian NAS6 pushed the NAS optimization SOTA
🚩 Next came the game changer DARTS7. It used earlier innovations.

[7] DARTS: Differentiable Architecture Search, Hanxiao Liu et al., https://arxiv.org/abs/1806.09055

[5] Regularized Evolution for Image Classifier Architecture Search,Esteban Real et al.
[6] Parallelised Bayesian Optimisation via Thompson Sampling, Kirthevasan Kandasamy et al.

[3] Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph et al., https://arxiv.org/abs/1707.07012 
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NAS Research & TinyML: Mainstream NAS Goals

[7] DARTS: Differentiable Architecture Search, Hanxiao Liu et al., https://arxiv.org/abs/1806.09055

[5] Regularized Evolution for Image Classifier Architecture Search,Esteban Real et al.
[6] Parallelised Bayesian Optimisation via Thompson Sampling, Kirthevasan Kandasamy et al.

[3] Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph et al., https://arxiv.org/abs/1707.07012 
[4] Efficient Neural Architecture Search via Parameter Sharing, Hieu Pham et al., https://arxiv.org/pdf/1802.03268.pdf

[1] Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, https://arxiv.org/abs/1611.01578
[2] Designing Neural Network Architectures using Reinforcement Learning, Bowen Baker et al., https://arxiv.org/abs/1611.02167

🚩 Started with RL using RNN1 , Q-Learning2 to generate architecture
🚩 Next two big innovations were cellular search space3 and parameter sharing4

🚩 Meanwhile Evolutionary6, Bayesian NAS7 pushed the NAS optimization SOTA
🚩 Next came the game changer DARTS5. It used earlier innovations.
🚩 All paved the way for searching larger, more accurate nets much faster
🚩 I had to drop many deserving papers due to space constraints
🚩 This goal is not important for TinyML applications. 
🚩 However, let's remember 2-MetaQNN, 3-NASNet, 4-ENAS, 5-DARTS, 6-AE, & 7-BO

https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1707.07012
https://arxiv.org/pdf/1802.03268.pdf
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.02167
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NAS Research & TinyML: TinyML Goals

🚩 1000-layer DNN for MCUs ? - 20-30 layer DNN fits ; Global search space good enough; complex, 
unexpected interconnect8 OK ; Training smaller models marginalizes many problems 

[8] SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures, Cheng et al.
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NAS Research & TinyML: TinyML Goals

🚩 1000-layer DNN for MCUs ? - 20-30 layer DNN fits ; Global search space good enough; complex, 
unexpected interconnect8 OK ; Training smaller models marginalizes many problems 

🚩 For TinyML model size, peak RAM usage, #MAC are highly important 
🚩 Evaluation, measurement of KPIs, reward engineering are important
🚩 MCUNet v19 & v210 are top class works - based on one shot NAS11, Search Space reduction highest 

FLOPs within SRAM constraint - closely tied with TinyEngine IR for HW params

[10] MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, Ji Lin et al., https://arxiv.org/abs/2110.15352

[8] SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures, Cheng et al.
[9] MCUNet: Tiny Deep Learning on IoT Devices, Ji Lin et al., https://arxiv.org/pdf/2007.10319

[11] Understanding and Simplifying One-Shot Architecture Search, Bender et al., https://proceedings.mlr.press/v80/bender 18a

https://arxiv.org/abs/2110.15352
https://proceedings.mlr.press/v80/bender18a.html
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🚩 For TinyML model size, peak RAM usage, #MAC are highly important 
🚩 Evaluation, measurement of KPIs, reward engineering are important
🚩 MCUNet v19 & v210 are top class works - based on one shot NAS11, Search Space reduction highest 

FLOPs within SRAM constraint - closely tied with TinyEngine IR for HW params
🚩 μ-NAS12 based on AE & BO, use working sets to approximate PMU & #MAC for latency 

[12] µNAS: Constrained Neural Architecture Search for Microcontrollers, Edgar Liberis et al., https://arxiv.org/pdf/2010.14246
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[8] SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures, Cheng et al.
[9] MCUNet: Tiny Deep Learning on IoT Devices, Ji Lin et al., https://arxiv.org/pdf/2007.10319

[11] Understanding and Simplifying One-Shot Architecture Search, Bender et al., https://proceedings.mlr.press/v80/bender 18a

https://arxiv.org/abs/2110.15352
https://proceedings.mlr.press/v80/bender18a.html


16 

NAS Research & TinyML: TinyML Goals

🚩 1000-layer DNN for MCUs ? - 20-30 layer DNN fits ; Global search space good enough; complex, 
unexpected interconnect8 OK ; Training smaller models marginalizes many problems 

🚩 For TinyML model size, peak RAM usage, #MAC are highly important 
🚩 Evaluation, measurement of KPIs, reward engineering are important
🚩 MCUNet v19 & v210 are top class works - based on one shot NAS11, Search Space reduction highest 

FLOPs within SRAM constraint - closely tied with TinyEngine IR for HW params
🚩 μ-NAS12 based on AE & BO, use working sets to approximate PMU & #MAC for latency 
🚩 MicroNets13 most promising: DARTS + latency, memory, energy - all approximated by #FLOPS, MO 

optimization DARTS Loss + ‘some regularizer’ - not clear: https://github.com/liyunsheng13/micronet 
🚩 Moreover, this CVPR ‘20 paper showed that #MAC not good proxy for latency

[13] MicroNets: Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers, Colby 
Banbury et al., https://arxiv.org/abs/2010.11267
[14] Latency-Aware Differentiable Neural Architecture Search, Yuhui Xu et al., https://arxiv.org/abs/2001.06392

[12] µNAS: Constrained Neural Architecture Search for Microcontrollers, Edgar Liberis et al., https://arxiv.org/pdf/2010.14246

[10] MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, Ji Lin et al., https://arxiv.org/abs/2110.15352
[11] Understanding and Simplifying One-Shot Architecture Search, Bender et al., https://proceedings.mlr.press/v80/bender 18a

https://github.com/liyunsheng13/micronet
https://arxiv.org/abs/2110.15352
https://proceedings.mlr.press/v80/bender18a.html
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NAS Research & TinyML: Reward Engineering

🚩 Generally, for NAS reward is ACC - proven on benchmark datasets 
🚩 TinyML objective: Pareto Optimal - one objective can’t be improved without making another worse
🚩 argmin α ∈ A { 1.0 − ACC(α), SIZE(α), PMU(α), LAT(α) }
🚩 Easiest method - treat all other objectives as constraints ( comes from platform)
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NAS Research & TinyML: Reward Engineering

🚩 Generally, for NAS reward is ACC - proven on benchmark datasets 
🚩 TinyML objective: Pareto Optimal - one objective can’t be improved without making another worse
🚩 argmin α ∈ A { 1.0 − ACC(α), SIZE(α), PMU(α), LAT(α) }
🚩 Easiest method - treat all other objectives as constraints ( comes from platform)
🚩 DPP-Net15 -  ACC, #params, inference time, memory usage on actual hardware
🚩 MONAS16 - scalarization: R = α∗ACC − (1−α)∗ENERGY
🚩 μ-NAS12 - scalarization: Lt (α) = max( λt

1
 (1.0 − ACC(α)), λt

2
 PMU(α), λt

3
 SIZE(α), λt

4
 MACS(α) )

[15] DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures, Jin-Dong Dong et al., 
https://arxiv.org/abs/1806.08198 
[16] MONAS: Multi-Objective Neural Architecture Search using Reinforcement Learning, Chi-Hung Hsu et al., 
https://arxiv.org/abs/1806.10332
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NAS Research & TinyML: Reward Engineering

🚩 Generally, for NAS reward is ACC - proven on benchmark datasets 
🚩 TinyML objective: Pareto Optimal - one objective can’t be improved without making another worse
🚩 argmin α ∈ A { 1.0 − ACC(α), SIZE(α), PMU(α), LAT(α) }
🚩 Easiest method - treat all other objectives as constraints ( comes from platform)
🚩 DPP-Net15 -  ACC, #params, inference time, memory usage on actual hardware
🚩 MONAS16 - scalarization: R = α∗ACC − (1−α)∗ENERGY
🚩 μ-NAS12 - scalarization: Lt (α) = max( λt

1
 (1.0 − ACC(α)), λt

2
 PMU(α), λt

3
 SIZE(α), λt

4
 MACS(α) )

🚩 MicroNets13 - using regularizer with DARTS: ΣK
k=1

 z
k
 |θ

k
|  - how ?

[15] DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures, Jin-Dong Dong et al., 
https://arxiv.org/abs/1806.08198 
[16] MONAS: Multi-Objective Neural Architecture Search using Reinforcement Learning, Chi-Hung Hsu et al., 
https://arxiv.org/abs/1806.10332
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The Naive Neural Architecture Search: Model

✒ input images x ∈ ℝʰˣʷˣᶜ from an input space 𝑋 , and a set of labels x ∈ ℝ from an output space 𝑌
✒ Mapping η: 𝑋, 𝑌, 𝑃 → 𝒩(θ)

✒ 𝒩ᵐ(θₜ) ∘ … 𝒩²(θ₂) ∘ 𝒩¹(θ₁), where each layer implementation 𝒩ⁱ is parametrized by θᵢ, and 

implements the functionality fᵢ

✒ y = fₜ( fₜ₋₁(…(f₁(x))…)), where each fᵢ can be an affine transform, non-linear transform , etc.
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Naive NAS: Representing fₜ( fₜ₋₁(…(f₁(x))…)) 

1. Assign identifiers for each 
component of the architecture

2. Let the encoding of a single layer be: 
[ <layer 
type><input><output><kernel 
size><stride><padding>… ]  

3. Let the architecture be a 
concatenation of all such layers in 
sequence:
[ [<layer 1><param 1><param 2>…] 
[<layer 2><param 1><param 2>…] 
[<layer n><param 1><param 2>…] ] 

Operation Params Values

Conv2D Kernel size {1,3,...} 

Out 
Channel

{16,32,...}

In Channel {16,32...}

Stride {1,2}

Linear In {10,64,..}

Out {10,64,..}

Softmax

Operation Encoding

Conv2D 1

Linear 2

MaxPool2D 3

BN 4

Softmax 5
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Algorithm 1: Naive NAS - Random Architecture Search

Initialize: Set max_layers, max_params, max_score, Layers, 
Params, Values lists & empty architecture 𝖓

while ρ < max_score do

   for each l  in Layers  do

       for each h in Params [ l ] do

           2. l [ h ] ← random_choice ( Values [ h ] )

       3. Append l to architecture 𝖓  

   4. Convert string architecture 𝖓 to 𝒩(θ)

   5. Train and evaluate 𝒩(θ) to get ACC, SIZ, RAM, MAC

   6. Convert ACC, SIZ, RAM, MAC  into a weighted score ρ

for each l  in Layers  do

  for each h in Params 

     random_apply(𝖓[l [h ] ], Values(h))  
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Enhancing Naive NAS

👎 Problems of Naive NAS
✖ Learns nothing, better architecture are NOT generated progressively
✖ We may get a good architecture, but no guarantee when
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Enhancing Naive NAS

👎 Problems of Naive NAS
✖ Learns nothing, better architecture are NOT generated progressively
✖ We may get a good architecture, but no guarantee when

❓ How to make the search intelligent?
🔧 Consider and incorporate the feedback generated from the evaluation of the network
🔧 Should strive for generating progressively better architectures

👂 Sometimes however, it works surprisingly well*

[ * ] Random Search and Reproducibility for Neural Architecture Search, Liam Li, Ameet Talwalkar, 
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, PMLR, 2020
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Enhancing Naive NAS

👎 Problems of Naive NAS
✖ Learns nothing, better architecture are NOT generated progressively
✖ We may get a good architecture, but no guarantee when

❓ How to make the search intelligent?
🔧 Consider and incorporate the feedback generated from the evaluation of the network
🔧 Should strive for generating progressively better architectures

👂 Sometimes however, it works surprisingly well*
👂 Making the search intelligent is just putting it into one of the existing formulae - not very difficult if we 

know the formula & understand our problem

[ * ] Random Search and Reproducibility for Neural Architecture Search, Liam Li, Ameet Talwalkar, 
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, PMLR, 2020
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Reinforcement Learning Based NAS: Model

✒ We model the search (NAS agent) as Markov Decision Process (MDP)

✒ Agent starts with an initial architecture 𝖓 - its initial state

✒ States are associated with 𝖓, identified by a state vector 

✒ From one state other states can be generated by modifying 𝖓 

✒ Modifying 𝖓 is taking some action 

✒ There can be several choices of action from a current state

✒ Why are we doing all these? We want the agent to choose best actions



28 

RL NAS: How to Identify the Best Action?

✒ Agent aims to take actions, such that a reward value is maximized

✒ Reward represents the feedback that agent receives from environment

✒ Reward can be the validation accuracy
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RL NAS: How to Identify the Best Action?

✒ Agent aims to take actions, such that a reward value is maximized

✒ Reward represents the feedback that agent receives from environment

✒ Reward can be the validation accuracy

✒ Reward can be immediate or in distant future for a state trajectory
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RL NAS: Value of a State Transition

✒ Need to associate a value for transition from one state to other on an action

✒ Cumulative value of a state transition from Cₜ₁ to Cₜ₂, on an action α
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RL NAS: Value of a State Transition

✒ Need to associate a value for transition from one state to other on an action

✒ Cumulative value of a state transition from Cₜ₁ to Cₜ₂, on an action α

✒ A greedy strategy considers the maximum expected reward starting from Cₜ₂

✒ V(∘) → action-value function and the individual V(Cₜ, α) → Q-values
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Algorithm 2: RL NAS

Initialize: Set max_score, Layers, Params, Values lists,  empty 
architecture 𝖓, action set 𝓐 & state set 𝓒 

while ρ < max_score do

  for each l  in Layers  do

        for each h in Params [ l ] do

             2. l [ h ] ← random_choice ( Values [ h ] )

        3. Append l to architecture 𝖓 

        4. Update 𝓐 with α, 𝓒 with C𝖓 

   4. Convert string architecture 𝖓 to 𝒩(θ)

   5. Train and evaluate 𝒩(θ) to get ACC, SIZ, RAM, MAC

   6. Convert ACC, SIZ, RAM, MAC  into a weighted score ρ

   for each C𝖓  in 𝓒  do

       for each α  in 𝓐  do  

       7. Use  C𝖓 , α , ρ, V(C𝖓 
, α) to train 𝓜(θ) 

   

  

EX
PL

O
R

E

EV
A

LU
AT

E



33 

Initialize: Set max_layers, max_params, max_score, Layers, Params, 
Values lists,  empty architecture 𝖓, & action set 𝓐
while ρ < max_score do

  If random_value < ε do

      1.  EXPLORE

  else do

     for each l  in Layers  do

             2. C𝖓 + 1
  ← 𝓜(θ) ( C𝖓)

             3. l ← C𝖓 + 1

     4. Append l to architecture 𝖓 

   7. EVALUATE

EX
PL

O
ITAlgorithm 2: RL NAS
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Case Study: RL-NAS

Generating Tiny Deep Neural 
Networks for ECG Classification on 
MCU, Shalini Mukhopadhyay, 
Swarnava Dey, Avik Ghose (TCS 
Research), Pragya Singh (IIIT-D), 
Pallab Dasgupta (IIT KGP) IEEE 
Percom 2023
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Case Study: RL-NAS
💓 RL based NAS (MetaQNN2) - ECG Atrial Fibrillation, Smoking episode, & Hand Gesture
💓 3000 iterations, 90 hours (A100), 20-layer, 225 KB model with SOTA F1 score for ECG-AF 
💓 MO - ACC, SIZE, SRAM, #MAC: R =  ( W

a
ACC + ∑

i
 W exp(w

i
P

i
) ) / ∑|W |

Multi-objective Convergence Clear Front of good models

Adafruit Feather 
NRF52840
RAM Size : 256 kB 
Flash Size : 1 MB 
Target MACs : 16 M

Search Parameters

Generating Tiny Deep Neural Networks for ECG Classification on Micro-controllers, Mukhopadhyay et al., IEEE Percom 2023
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Algorithm 3: EVO NAS

Initialize: Set max_score, max_pop, Layers, Params, 
Values lists,  empty architecture 𝖓, action set 𝓐 & state 
set 𝓒 

1. 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁 ← {𝜙}

for 1… max_score   do

   2. 𝖓, 𝓐 ← EXPLORE 

   3. ρ ← EVALUATE(𝖓)   

   4. 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁.append(𝖓, 𝓐, ρ) 

mut_rate ← 1.0 

for 1… max_score   do

   5. parent ← 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁.fittest() 

   6. child ← mutate(parent, mut_rate)

(contd.)

for 1… max_score   do

   7. parent ← 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁.fittest() 

   8. Child, 𝓐 ← mutate(parent, mut_rate)

   9. ρ ← EVALUATE(child) 

  10. 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁.append(child, 𝓐, ρ)

  11. 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁.remove_least_fits()

  12. Update mut_rate

13. final_architectures ← 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁.fittest()
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Points to Note

✋ The main approach is sampling architectures randomly, evaluating, learning to sample better 
architectures in an informed manner 

✋ Sequentially building network

✋ Reward is completely decoupled from search

✋ Discrete choices for layers and params
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DARTS: Differentiable NAS

Considers a fixed network a number of cells

Cells have nodes, connectivity (ops) is searched
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DARTS: Differentiable NAS

Considers a fixed network a number of cells

Cells have nodes, connectivity (ops) is searched

¯o(i,j)(x)=∑
o∈𝓞  

(   ( exp(α(i,j)
o 

)   /  ( ∑
o′∈𝓞exp(α(i,j)

o′ )  ) * o(x)

x(j)=∑i<jo(i,j)(x(i)) x(j)=∑i<jo(i,j)(x(i)) x(j)=∑i<jo(i,j)(x(i))

(a) (b) (c)

training training
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Algorithm 4: DARTS – Differentiable Architecture Search
Set max_layers, max_params, Create a mixed operation ̄o(i,j) parametrized by α(i,j) for 
each edge (i, j)

while not converged do

1. Update architecture α by descending ∇αL
val

(w − ξ ∇w L
train

(w, α), α)

(ξ = 0 if using first-order approximation)

2. Update weights w by descending ∇wL
train

(w, α)

3. Discretize for the final architecture based on the learned α.

4. Re-train

minαL
val

(α, argmin
w

L
train

(α,w))  ≈   ∇αL
val

(w− ξ ∇w L
train

(α,w)
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Take Home Points

✋ Gordon Moore is no more. Moore's law is supposed to reach saturation levels.                             
Still, it seems that the capacity of tiny devices will keep increasing in this decade 

✋ Consequently, we have to search larger & complex networks for Edge devices

✋ Thus multi-objective, one-shot differential NAS is the research direction for TinyML

✋ Meanwhile, this tutorial showed that the existing multi-objective, sample-based NAS methods are 
quite usable for the next few years 
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Thank You for bearing with me! 😊

Questions 👂
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