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Al research

Advancing Al
research to make
efficient Al ubiquitous

Power efficiency Personalization Efficient learning

Model design, Continuous learning, Robust learning
compression, quantization, contextual, always-on, through minimal data,
algorithms, efficient privacy-preserved, unsupervised learning,
hardware, software tool distributed learning on-device learning

A platform to scale Al
across the industry

Qualcomm Al Research is an initiative of Qualcomm Technologies, Inc.
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Renesas is enabling the next generation of Al-powered solutions
that will revolutionize every industry sector.
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Easily deploy your
tinyML solutions with
Arduino Pro

arduino.cc/pro
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© 2022 Arm

Powerlng tinyML Innovatlon

',.,~Arm Al Virtual Tech_

Talks

The latestin Al trends technologles & best
- practices from Arm and our Ecosystem
- :Pa'r‘t-ners.

-Demos, code examples, workshops, panel

. sesslonsand much more' ..

| | FortnlghtIyTuesday @ 4pm GMT/8am PT

Find out more:
- www.arm.com/techtalks -
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solutions to make tiny
Machine Learning easy
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Join Growing tinyML Communities:

13.9k members in
47 Groups in 39 Countries

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

4k members

&
11.6k followers

OftsEn

The tinyML Community
https://www.linkedin.com/groups/13694488/
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Swarnava Dey

Swarnava Dey is a Senior Scientist at TCS Research
working on embedded vision systems. He is an M.Tech
from IIT, Kharagpur, and currently pursuing PhD there in
robustness, verifiability and explainability of Embedded
Deep Neural Networks and Neuro Symbolic Al. He has 30+
granted patents, 25+ research papers, and is an author of
Towards Data Science: https://medium.com/@qgswadey.
His publication details can be found at his Google Scholar
page:https://scholar.google.co.in/citations?hl=en&user=aFpl
WJEAAAAJ
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Neural Architecture Search (YAutoML): Goals

e NAS research - Automatically generate better architectures than handcrafted models; benchmark accuracy on
NAS Bench dataset & ImageNet

e NAS for TinyML - Automatically customize & optimize DNNs for multiple constraints - [accuracy, model size,
SRAM usage (runtime memory), #MACs, latency, energy usage...]

m Resea rC h 2 Inventing for impact



Neural Architecture Search (~YAutoML): Goals

° NAS research - Automatically generate better architectures than handcrafted models; benchmark accuracy on NAS Bench dataset & ImageNet

° NAS for TinyML - Automatically customize & optimize DNNs for multiple constraints - [accuracy, model size, SRAM usage (runtime memory), #MACs, latency,
energy usage...]

% NAS SOTA - Differential, one-shot NAS - DARTS & DARTS-based
v DARTS works out of the box - https://github.com/quark0/darts
v  Default implementation single-objective - accuracy
v Difficult to get ready version that allows integration of my preferred objectives
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Neural Architecture Search (YAutoML): Goals

° NAS research - Automatically generate better architectures than handcrafted models; benchmark accuracy on NAS Bench dataset & ImageNet

o NAS for TinyML - Automatically customize & optimize DNNs for multiple constraints - [accuracy, model size, SRAM usage (runtime memory), #MACs, latency,
energy usage...]

® NAS SOTA - Differential, one-shot NAS - DARTS & DARTS-based
v DARTS works out of the box - https://github.com/quark0/darts
v  Default implementation single-objective - accuracy
v  Difficult to get ready version that allows integration of my preferred objectives

@ Heuristic / Sample based NAS are obsolete
v For searching tiny models the overhead is marginalized
v Easy to integrate preferred objectives
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Neural Architecture Search (YAutoML): Goals

° NAS research - Automatically generate better architectures than handcrafted models; benchmark accuracy on NAS Bench dataset & ImageNet

o NAS for TinyML - Automatically customize & optimize DNNs for multiple constraints - [accuracy, model size, SRAM usage (runtime memory), #MACs, latency,

energy usage...]

® NAS SOTA - Differential, one-shot NAS - DARTS & DARTS-based
v DARTS works out of the box - https://github.com/quark0/darts
v  Default implementation single-objective - accuracy
v  Difficult to get ready version that allows integration of my preferred objectives

@ Heuristic / Sample based NAS are obsolete
v For searching tiny models the overhead is marginalized
v Easy to integrate preferred objectives

' NAS for TinyML
v Large many-layered networks, complex connections not required
v Accurate multi-objective conformance, platform API support - highly required

v MCUNet V1 & V2, u-NAS, Micronets... have their merits & demerits. We may often need to tweak

existing frameworks - understanding NAS helps

LCS Research -

Inventing for impact


https://github.com/quark0/darts

¥  SOTA NAS research & TII’]YM L

¢ ANQAIVE method to generate DNN

+ Enhancing the method using REINfOrcement Learning
& Other optimization techniques for SAMPle-based nas

+ Gradient-based, one-shot nas

+ Take-home points

&75 Resea rCh 6 Inventing for impact



NAS Research & TinyML: Mainstream NAS Goals

P> Started with RL using RNN', Q-Learning? to generate architecture

[1] Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, https://arxiv.org/abs/1611.01578

[2] Designing Neural Network Architectures using Reinforcement Learning, Bowen Baker et al., https://arxiv.org/abs/1611.02167

m Resea rCh 7 Inventing for impact
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NAS Research & TinyML: Mainstream NAS Goals

P Started with RL using RNN', Q-Learning? to generate architecture
P> Next two big innovations were cellular search space® and parameter sharing®

[1] Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, https://arxiv.org/abs/1611.01578

[2] Designing Neural Network Architectures using Reinforcement Learning, Bowen Baker et al., https://arxiv.org/abs/1611.02167
[3] Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph et al., https://arxiv.org/abs/1707.07012

[4] Efficient Neural Architecture Search via Parameter Sharing, Hieu Pham et al., https://arxiv.org/pdf/1802.03268.pdf

LCS Research
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NAS Research & TinyML: Mainstream NAS Goals

P Started with RL using RNN', Q-Learning? to generate architecture
P> Next two big innovations were cellular search space® and parameter sharing®
P> Meanwhile Evolutionary®, Bayesian NAS® pushed the NAS optimization SOTA

[1] Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, https://arxiv.org/abs/1611.01578

[2] Designing Neural Network Architectures using Reinforcement Learning, Bowen Baker et al., https://arxiv.org/abs/1611.02167
[3] Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph et al., https://arxiv.org/abs/1707.07012

[4] Efficient Neural Architecture Search via Parameter Sharing, Hieu Pham et al., https://arxiv.org/pdf/1802.03268.pdf

[5] Regularized Evolution for Image Classifier Architecture Search,Esteban Real et al.

[6] Parallelised Bayesian Optimisation via Thompson Sampling, Kirthevasan Kandasamy et al.

LCS Research
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NAS Research & TinyML: Mainstream NAS Goals

Started with RL using RNN?, Q-Learning? to generate architecture
Next two big innovations were cellular search space® and parameter sharing*
Meanwhile Evolutionary®, Bayesian NAS® pushed the NAS optimization SOTA
Next came the game changer DARTS’. It used earlier innovations.

YvyYy

[1] Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, https://arxiv.org/abs/1611.01578

[2] Designing Neural Network Architectures using Reinforcement Learning, Bowen Baker et al., https://arxiv.org/abs/1611.02167
[3] Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph et al., https://arxiv.org/abs/1707.07012

[4] Efficient Neural Architecture Search via Parameter Sharing, Hieu Pham et al., https://arxiv.org/pdf/1802.03268.pdf

[5] Regularized Evolution for Image Classifier Architecture Search,Esteban Real et al.

[6] Parallelised Bayesian Optimisation via Thompson Sampling, Kirthevasan Kandasamy et al.

[7] DARTS: Differentiable Architecture Search, Hanxiao Liu et al., https://arxiv.org/abs/1806.09055

[CS Research .

Inventing for impact
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NAS Research & TinyML: Mainstream NAS Goals

Started with RL using RNN?, Q-Learning? to generate architecture

Next two big innovations were cellular search space® and parameter sharing*
Meanwhile Evolutionary®, Bayesian NAS’ pushed the NAS optimization SOTA
Next came the game changer DARTS". It used earlier innovations.

All paved the way for searching larger, more accurate nets much faster

| had to drop many deserving papers due to space constraints

This goal is not important for TinyML applications.

However, let's remember 2-MetaQNN, 3-NASNet, 4-ENAS, 5-DARTS, 6-AE, & 7-BO

YVVYVVYYVYYVYY

[1] Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, https://arxiv.org/abs/1611.01578

[2] Designing Neural Network Architectures using Reinforcement Learning, Bowen Baker et al., https://arxiv.org/abs/1611.02167
[3] Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph et al., https://arxiv.org/abs/1707.07012

[4] Efficient Neural Architecture Search via Parameter Sharing, Hieu Pham et al., https://arxiv.org/pdf/1802.03268.pdf

[5] Regularized Evolution for Image Classifier Architecture Search,Esteban Real et al.

[6] Parallelised Bayesian Optimisation via Thompson Sampling, Kirthevasan Kandasamy et al.

[7] DARTS: Differentiable Architecture Search, Hanxiao Liu et al., https://arxiv.org/abs/1806.09055

LCS Research )
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https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.02167

NAS Research & TinyML: TinyML Goals

P> 1000-layer DNN for MCUs ? - 20-30 layer DNN fits ; Global search space good enough; complex,
unexpected interconnect® OK ; Training smaller models marginalizes many problems

[8] SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures, Cheng et al.

m Resea rC h 12 Inventing for impact



NAS Research & TinyML: TinyML Goals

P 1000-layer DNN for MCUs ? - 20-30 layer DNN fits ; Global search space good enough; complex,
unexpected interconnect® OK ; Training smaller models marginalizes many problems

P> For TinyML model size, peak RAM usage, #MAC are highly important

> Evaluation, measurement of KPls, reward engineering are important

[8] SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures, Cheng et al.
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NAS Research & TinyML: TinyML Goals

P> 1000-layer DNN for MCUs ? - 20-30 layer DNN fits ; Global search space good enough; complex,
unexpected interconnect® OK ; Training smaller models marginalizes many problems

For TinyML model size, peak RAM usage, #MAC are highly important

Evaluation, measurement of KPIs, reward engineering are important

MCUNet v1° & v2° are top class works - based on one shot NAS!!, Search Space reduction highest
FLOPs within SRAM constraint - closely tied with TinyEngine IR for HW params

vvy

[8] SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures, Cheng et al.
[9] MCUNet: Tiny Deep Learning on loT Devices, Ji Lin et al., https://arxiv.org/pdf/2007.10319

[10] MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, Ji Lin et al., https://arxiv.org/abs/2110.15352
[11] Understanding and Simplifying One-Shot Architecture Search, Bender ef al., https://proceedings.mir.press/v80/bender 18a

LCS Research )

Inventing for impact
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NAS Research & TinyML: TinyML Goals

P 1000-layer DNN for MCUs ? - 20-30 layer DNN fits ; Global search space good enough; complex,
unexpected interconnect® OK ; Training smaller models marginalizes many problems

For TinyML model size, peak RAM usage, #MAC are highly important

Evaluation, measurement of KPIs, reward engineering are important

MCUNet v1° & v21° are top class works - based on one shot NAS!?, Search Space reduction highest
FLOPs within SRAM constraint - closely tied with TinyEngine IR for HW params

u-NAS*2 based on AE & BO, use working sets to approximate PMU & #MAC for latency

vV VVvY

[8] SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures, Cheng et al.
[9] MCUNet: Tiny Deep Learning on loT Devices, Ji Lin et al., https://arxiv.org/pdf/2007.10319

[10] MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, Ji Lin et al., https://arxiv.org/abs/2110.15352

[11] Understanding and Simplifying One-Shot Architecture Search, Bender ef al., https://proceedings.mir.press/v80/bender 18a
[12] uNAS: Constrained Neural Architecture Search for Microcontrollers, Edgar Liberis et al., https://arxiv.org/pdf/2010.14246

[CS Research .
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NAS Research & TinyML: TinyML Goals

P 1000-layer DNN for MCUs ? - 20-30 layer DNN fits ; Global search space good enough; complex,
unexpected interconnect® OK ; Training smaller models marginalizes many problems

P> For TinyML model size, peak RAM usage, #MAC are highly important

‘P Evaluation, measurement of KPIs, reward engineering are important

P> MCUNet v1° & v2™ are top class works - based on one shot NAS!, Search Space reduction highest
FLOPs within SRAM constraint - closely tied with TinyEngine IR for HW params

P LU-NAS'? based on AE & BO, use working sets to approximate PMU & #MAC for latency

P> MicroNets'® most promising: DARTS + latency, memory, energy - all approximated by #FLOPS, MO
optimization DARTS Loss + ‘some regularizer’ - not clear: https://github.com/livunshengl3/micronet

P> Moreover, this CVPR ‘20 paper showed that #MAC not good proxy for latency

[10] MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, Ji Lin et al., https://arxiv.org/abs/2110.15352
[11] Understanding and Simplifying One-Shot Architecture Search, Bender et al., https://proceedings.mir.press/v80/bender 18a
[12] uNAS: Constrained Neural Architecture Search for Microcontrollers, Edgar Liberis et al., https://arxiv.org/pdf/2010.14246

[13] MicroNets: Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers, Colby
Banbury et al., https://arxiv.org/abs/2010.11267
[14] Latency-Aware Differentiable Neural Architecture Search, Yuhui Xu et al., https://arxiv.org/abs/2001.06392

m Resea rCh | Inventing for impact
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Generally, for NAS reward is ACC - proven on benchmark datasets

TinyML objective: Pareto Optimal - one objective can’t be improved without making another worse
argmina € A{1.0 - ACC(a), SIZE(a), PMU(a), LAT(a) }

Easiest method - treat all other objectives as constraints ( comes from platform)

vvyy

LCS Research
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NAS Research & TinyML: Reward Engineering

Generally, for NAS reward is ACC - proven on benchmark datasets

TinyML objective: Pareto Optimal - one objective can’t be improved without making another worse
argmina € A{1.0 - ACC(a), SIZE(a), PMU(a), LAT(a) }

Easiest method - treat all other objectives as constraints ( comes from platform)

DPP-Net!® - ACC, #params, inference time, memory usage on actual hardware

MONAS?® - scalarization: R = a*ACC — (1—a)*ENERGY

U-NAS* - scalarization: L* (a) = max( A', (1.0 — ACC(a)), A", PMU(a), A, SIZE(a), A, MACS(a) )

VYVVVVYVY

[15] DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures, Jin-Dong Dong et al.,
https://arxiv.org/abs/1806.08198

[16] MONAS: Multi-Objective Neural Architecture Search using Reinforcement Learning, Chi-Hung Hsu et al.,
https://arxiv.org/abs/1806.10332

m Resea rCh 18 Inventing for impact



NAS Research & TinyML: Reward Engineering

Generally, for NAS reward is ACC - proven on benchmark datasets

TinyML objective: Pareto Optimal - one objective can’t be improved without making another worse
argmina € A{1.0 - ACC(a), SIZE(a), PMU(a), LAT(a) }

Easiest method - treat all other objectives as constraints ( comes from platform)

DPP-Net!® - ACC, #params, inference time, memory usage on actual hardware

MONAS?® - scalarization: R = a*ACC — (1—a)*ENERGY

U-NAS* - scalarization: L* (a) = max( A', (1.0 — ACC(a)), A", PMU(a), A, SIZE(a), A, MACS(a) )

MicroNets' - using regularizer with DARTS: 3¥ 7, [6,] -how ?

VYVYVVVVYVYY

[15] DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures, Jin-Dong Dong et al.,
https://arxiv.org/abs/1806.08198

[16] MONAS: Multi-Objective Neural Architecture Search using Reinforcement Learning, Chi-Hung Hsu et al.,
https://arxiv.org/abs/1806.10332

tC/S Resea rCh 19 Inventing for impact



The Naive Neural Architecture Search: Model

¢ inputimages x € Rhxwxc from an input space X, and a set of labels x € R from an output space Y

Mappingn: X, Y, P — ./I(B)

 AM(OL[]) o ....4%0,) ° AB,), where each layer implementation ./#' is parametrized by 6, and
implements the functionality fi

3

o y=flJ(fl]4(...(fi(x))...)), where each fi can be an affine transform, non-linear transform, etc.

model = nn.Sequential(nn.Conv2d(l, 6, kernel_size=5, stride=1, padding=0),
nn.ReLU(),
nn.MaxPool2d(kernel_size = 2, stride = 2)),
nn.Linear (400, 10),
torch.nn.Softmax(dim=10))

l:OS Resea rC h 2 Inventing for impact



1. Assign identifiers for each

: Operation | Params Values Operation | Encoding

component of the architecture

2. Let the encoding of a single layer be: | | conv2D Kernel size | {1,3,...} Conv2D 1
[ <layer
type><input><output><kernel Out {16,32,...} Linear 2
size><stride><padding>... ] Channel

3. Let the architecture be a MaxPool2D | 3
concatenation of all such layers in In Channel | {16,32...} aN 4
sequence: _
[ [<layer 1><param 1><param 2>...] Stride 1,2} Softmax 5
[<layer 2><param 1><param 2>...] Linear In {10,64,..}
[<layer n><param 1><param 2>...] ] 7

Out {10,64,..}
Softmax

&75 Resea rCh a | Inventing for impact



Initialize: Set max_layers, max_params, max_score, Layers,
Params, Values lists & empty architecture n

while p < max_score do for each I in Layers do
for each I in Layers do for each h in Params
for each hin Params [ /] do random_apply(n[/ [h ]], Values(h))
2.1[ h] < random_choice ( Values [h])

3. Append I to architecture »
4. Convert string architecture mto ./H0)
5. Train and evaluate «#0) to get ACC, SIZ, RAM, MAC

6. Convert ACC, SIZ, RAM, MAC into a weighted score p

LCS Research

2 | Inventing for impact



Enhancing Naive NAS

Problems of Naive NAS
% Learns nothing, better architecture are NOT generated progressively
%  We may get a good architecture, but no guarantee when

l:OS Resea rC h P Inventing for impact



Enhancing Naive NAS

@ Problems of Naive NAS
% Learns nothing, better architecture are NOT generated progressively
%  We may get a good architecture, but no guarantee when

?  How to make the search intelligent?
4~ Consider and incorporate the feedback generated from the evaluation of the network
+~ Should strive for generating progressively better architectures
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Enhancing Naive NAS

@ Problems of Naive NAS
% Learns nothing, better architecture are NOT generated progressively
%  We may get a good architecture, but no guarantee when

? How to make the search intelligent?
4 Consider and incorporate the feedback generated from the evaluation of the network
4 Should strive for generating progressively better architectures

. Sometimes however, it works surprisingly well*

[ * ] Random Search and Reproducibility for Neural Architecture Search, Liam Li, Ameet Talwalkar,
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, PMLR, 2020
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Enhancing Naive NAS

@ Problems of Naive NAS
% Learns nothing, better architecture are NOT generated progressively
%  We may get a good architecture, but no guarantee when

? How to make the search intelligent?
4 Consider and incorporate the feedback generated from the evaluation of the network
4 Should strive for generating progressively better architectures

® Sometimes however, it works surprisingly well*
' Making the search intelligent is just putting it into one of the existing formulae - not very difficult if we
know the formula & understand our problem

[ * ] Random Search and Reproducibility for Neural Architecture Search, Liam Li, Ameet Talwalkar,
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, PMLR, 2020
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< We model the search (NAS agent) as Markov Decision Process (MDP)
= Agent starts with an initial architecture - its initial state

¢  States are associated with #, identified by a state vector

¢ From one state other states can be generated by modifying n

< Modifying mis taking some action

=0 There can be several choices of action from a current state

=  Why are we doing all these? We want the agent to choose best actions
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RL NAS: How to Identify the Best Action?

= Agent aims to take actions, such that a reward value is maximized
< Reward represents the feedback that agent receives from environment

= Reward can be the validation accuracy

l:OS Resea rC h 2 Inventing for impact



RL NAS: How to Identify the Best Action?

= Reward can be immediate or in distant future for a state trajectory

Ry = pe, + 7Pty +7 Pt + - -
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RL NAS: Value of a State Transition

= Need to associate a value for transition from one state to other on an action

> Cumulative value of a state transition from CO; to CO,, on an action a

V(Ctl Y C\f) . p%tlct2 _|_ /VVCtQ
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RL NAS: Value of a State Transition

V(Ctl Y OK) : p%thtQ + VVCtQ

=0 A greedy strategy considers the maximum expected reward starting from C[,

V(Ctmah) — pg’ill Ct, + 712

to

> V(°) — action-value function and the individual V(C[J, a) — Q-values

LCS Research

aX V(Ct2 ] Oétz)
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Initialize: Set max_score, Layers, Params, Values lists, empty
architecture n, action set A & state set C

while p < max_score do

for each | in Layers do

for each hin Params [ /] do g
2.1[ h] < random_choice (Values[h]) N 5
3. Append I to architecture n w
4. Update A with a, Cwith C -
Algorithm 2: RL NAS 4. Convert string architecture nto .#0) A

5. Train and evaluate .#{0) to get ACC, SIZ, RAM, MAC >
6. Convert ACC, SIZ, RAM, MAC into a weighted score p

EVALUATE

for each Cn inC do
foreacha in A do

7.Use C,, a, p, V(C,, a) to train AM(8)

EOS Resea rCh 2 | Inventing for impact



Initialize: Set max_layers, max_params, max_score, Layers, Params,
Values lists, empty architecture n, & action set A

while p < max_score do

If random_value < € do

1. EXPLORE
else do
N
for each I in Layers do

. . t
|

o

3.I<—Cn+1 ﬁ

4. Append I to architecture w -/
7. EVALUATE
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Case Study: RL-NAS

Exploration Rate = 1 Exploration Rate = 0.9 Exploration Rate = 0.4 Exploration Rate = 0.1
B e of [/ it e
i RANDOM BEST action | [1] | BEST action [1]
RANDOM | | FROMDQN | _ [03432] /!  FROMDQN [0,3,1,16]
i| E E RANDON},_--E E 2 BEST action 21
. ) RANDOM X H S ! ' RANDOM [0.9.1,128] FROM DQN [0.5,1,32]
Generating Tiny Deep Neural 'r-w::::::::::::::_: ] faset W R : )
Networks for ECG Classificationon ' BEST 3ttienis, (3l — BEST action 3l
MCU, Shalini Mukhopadhyay, ¥ i oy, FROMDON
’ ’ Lo e s i A ' =
i PP SOl st — 1
owarnave Dey, AviK 'Ghose (TCS RANDOM E ! (4] 0 RANDOM [4] BEST action | [4] ! BEST action [4]
Research), Pragya Singh (IlIT-D), N 03164 /1, [0,3,1,64] FROMDQN |\ [03164] /!  FROMDQN [0,3,1,64]
Pallab Dasgupta (IIT KGP) IEEE IR i brsssssaenend :
i | i BEST action | [5] E BEST acti [5]
Percom 2023 RANDOM i : ' o @ FROM DQN i [2220] ! FRO,\: cogr: . [2220]

...............

&
i [6] ! TRAIN [6] BEST action (6]
RANDOM ! [3,0,0,0] ' REWARD DaN RANDOM [1.0,0,128] FROM DQN [1,0,0,64]
: |

...............

| = ' S
R “STORE BEST action | [71 | BEST action 71
|
— FROM DQN | [2,2,2,0] 5 FROMDQN ‘ [3,0,00]
' 5

' )
BEST action ! 8] E
FROM DQN i [3.0,0,0] !

H 1

...............
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Model Size Accuracy Reward

MACs

RL based NAS (MetaQNN?) - ECG Atrial Fibrillation, Smoking episode, & Hand Gesture
3000 iterations, 90 hours (A100), 20-layer, 225 KB model with SOTA F1 score for ECG-AF
MO - ACC, SIZE, SRAM, #MAC: R= (W_ACC+ Y. W exp(wP))/ Y |W |

04 -

0.70 4

0.65 -
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05 4

0.0

10 4

0.5

0.0 4

T
10

T
08

06
Exploration Rate

04

Multi-objective Convergence

*

All Models
Best Model

Clear Front of good models

lell

Z Bl
izl
A1 A2 A3 A4 A5 SCK MO
RO

Adafruit Feather
NRF52840

RAM Size : 256 kB
Flash Size : 1 MB
Target MACs : 16 M

Search Parameters

Generating Tiny Deep Neural Networks for ECG Classification on Micro-controllers, Mukhopadhyay et al., IEEE Percom 2023
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Initialize: Set max_score, max_pop, Layers, Params,
Values lists, empty architecture n, action set A & state
set C

1. POPULATION <« {¢}
for 1... max_score do
2.1, A — EXPLORE
3. p — EVALUATE(n)
4. POPULATION.append(m, A, p)
mut_rate <— 1.0
for 1... max_score do
5. parent «<— POPULATION fittest()

6. child <— mutate(parent, mut_rate)

LCS Research

(contd.)

for 1... max_score do

7. parent < POPULATION fittest()
8. Child, A <— mutate(parent, mut_rate)
9. p «— EVALUATE(child)
10. POPULATION.append(child, A, p)
11. POPULATION.remove_least_fits()
12. Update mut_rate
13. final _architectures «— POPULATION fittest()

Inventing for impact



The main approach is sampling architectures randomly, evaluating, learning to sample better
architectures in an informed manner

Sequentially building network
Reward is completely decoupled from search

Discrete choices for layers and params

LCS Research
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DARTS: Differentiable NAS

Considers a fixed network a numberofcells N~ L J 'i]

Cells have nodes, connectivity (ops) is searched ‘[ Dﬁ }_‘
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DARTS: Differentiable NAS

Considers a fixed network a number of cells

Cells have nodes, connectivity (ops) is searched

- ‘/D

L e
-=z% -

training training

E— R ——
-2 3

\\\

\
~
e X(/)_Z O(’”(X(’)) - - X(/)—Z o(l/)( X(’)) - D

(a)

CCS Research

(b)

“0l(x)=y _( (exp(a™ ) /(¥ ._ Oexp(a(i,j)o' ) ) *o(x)

/B\
/

N

X(i):Zi<jo(i,j)( X(i)) N @

(c)
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Set max_layers, max_params, Create a mixed operation o/ parametrized by a®™/ for
each edge (i, j)

while not converged do

(w, a), a)

train

1. Update architecture a by descending VaL _(w—=§ Vwl
(¢ = 0if using first-order approximation)

2. Update weights w by descending VwlL_ . (w, Q)

train

3. Discretize for the final architecture based on the learned a.

4. Re-train

(a,w)

train

min L (a,argmin L __(a,w)) = Val (w=¢ Vwl
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Gordon Moore is no more. Moore's law is supposed to reach saturation levels.
Still, it seems that the capacity of tiny devices will keep increasing in this decade

Consequently, we have to search larger & complex networks for Edge devices
Thus multi-objective, one-shot differential NAS is the research direction for TinyML

Meanwhile, this tutorial showed that the existing multi-objective, sample-based NAS methods are
guite usable for the next few years

&75 Resea rC h a Inventing for impact



Thank You for bearing with me! @

Questions @
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