
“Neural Architecture Search for Tiny Devices”

Swarnava Dey – Senior Scientist, TCS Research

April 10, 2023

Thank you, tinyML Strategic Partners,
for committing to take tinyML to the next Level, together

Executive Strategic Partners

9

The Leading Development
Platform for Edge ML

edgeimpulse.com

1

Making Edge AI A Reality

Accelerate Your Edge Compute

www.syntiant.com

http://www.syntiant.com/

Platinum Strategic Partners

13

tinyML® Trailblazers
Ultra-low power machine learning at the edge success stories

DEPLOY VISION AI

AT THE EDGE AT SCALE

Gold Strategic Partners

16

Witness potential made possible at analog.com.

Where what if
becomes what is.

NEUROMORPHIC

INTELLIGENCE FOR THE

SENSOR-EDGE

www.innatera.com

www.st.com/ai

STMicroelectronics provides extensive

solutions to make tiny

Machine Learning easy

© 2022 Synaptics Incorporated 24

ENGINEERING
EXCEPTIONAL
EXPERIENCES
We engineer exceptional experiences
for consumers in the home, at work,
in the car, or on the go.

www.synaptics.com

Silver Strategic Partners

Join Growing tinyML Communities:

bb

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

The tinyML Community
https://www.linkedin.com/groups/13694488/

13.9k members in
47 Groups in 39 Countries

4k members
&

11.6k followers

https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/
https://www.linkedin.com/groups/13694488/

Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)

www.youtube.com/tinyML

9.1k subscribers, 537 videos with 310k views

http://www.youtube.com/tinyML

tinyML EMEA Innovation Forum 2023

Connect, Unify, and Grow the tinyML EMEA Community
June 26 - 28, 2023

https://www.tinyml.org/event/

EMEA 2023

https://www.tinyml.org/event/emea-2023

More sponsorships are available: sponsorships@tinyML.org

https://www.tinyml.org/event/emea-2023
mailto:sponsorships@tinyML.org

Reminders

youtube.com/tinyml

Slides & Videos will be posted
tomorrow

tinyml.org/forums

Please use the Q&A window for your
questions

Swarnava Dey

Swarnava Dey is a Senior Scientist at TCS Research

working on embedded vision systems. He is an M.Tech

from IIT, Kharagpur, and currently pursuing PhD there in

robustness, verifiability and explainability of Embedded

Deep Neural Networks and Neuro Symbolic AI. He has 30+

granted patents, 25+ research papers, and is an author of

Towards Data Science: https://medium.com/@qswadey.

His publication details can be found at his Google Scholar

page:https://scholar.google.co.in/citations?hl=en&user=aFpl

wjEAAAAJ

A Hardcore Technical Tutorial
In tinyML Talks, 10th April 2023

Neural Architecture Search for
Tiny Devices

Swarnava Dey

2

● NAS research - Automatically generate better architectures than handcrafted models; benchmark accuracy on
NAS Bench dataset & ImageNet

● NAS for TinyML - Automatically customize & optimize DNNs for multiple constraints - [accuracy, model size,
SRAM usage (runtime memory), #MACs, latency, energy usage…]

Neural Architecture Search (~AutoML): Goals

3

● NAS research - Automatically generate better architectures than handcrafted models; benchmark accuracy on NAS Bench dataset & ImageNet

● NAS for TinyML - Automatically customize & optimize DNNs for multiple constraints - [accuracy, model size, SRAM usage (runtime memory), #MACs, latency,
energy usage…]

Neural Architecture Search (~AutoML): Goals

👂 NAS SOTA - Differential, one-shot NAS - DARTS & DARTS-based
✔ DARTS works out of the box - https://github.com/quark0/darts
✔ Default implementation single-objective - accuracy
✔ Difficult to get ready version that allows integration of my preferred objectives

https://github.com/quark0/darts

4

Neural Architecture Search (~AutoML): Goals

👂 NAS SOTA - Differential, one-shot NAS - DARTS & DARTS-based
✔ DARTS works out of the box - https://github.com/quark0/darts
✔ Default implementation single-objective - accuracy
✔ Difficult to get ready version that allows integration of my preferred objectives

👂 Heuristic / Sample based NAS are obsolete
✔ For searching tiny models the overhead is marginalized
✔ Easy to integrate preferred objectives

● NAS research - Automatically generate better architectures than handcrafted models; benchmark accuracy on NAS Bench dataset & ImageNet

● NAS for TinyML - Automatically customize & optimize DNNs for multiple constraints - [accuracy, model size, SRAM usage (runtime memory), #MACs, latency,
energy usage…]

https://github.com/quark0/darts

5

Neural Architecture Search (~AutoML): Goals

👂 NAS SOTA - Differential, one-shot NAS - DARTS & DARTS-based
✔ DARTS works out of the box - https://github.com/quark0/darts
✔ Default implementation single-objective - accuracy
✔ Difficult to get ready version that allows integration of my preferred objectives

👂 Heuristic / Sample based NAS are obsolete
✔ For searching tiny models the overhead is marginalized
✔ Easy to integrate preferred objectives

👂 NAS for TinyML
✔ Large many-layered networks, complex connections not required
✔ Accurate multi-objective conformance, platform API support - highly required
✔ MCUNet V1 & V2, μ-NAS, Micronets… have their merits & demerits. We may often need to tweak

existing frameworks - understanding NAS helps

● NAS research - Automatically generate better architectures than handcrafted models; benchmark accuracy on NAS Bench dataset & ImageNet

● NAS for TinyML - Automatically customize & optimize DNNs for multiple constraints - [accuracy, model size, SRAM usage (runtime memory), #MACs, latency,
energy usage…]

https://github.com/quark0/darts

6

Today’s Agenda

📌 SOTA NAS research & TinyML

📌 A naive method to generate DNN

📌 Enhancing the method using Reinforcement Learning
📌 Other optimization techniques for sample-based NAS

📌 Gradient-based, one-shot NAS

📌 Take-home points

7

NAS Research & TinyML: Mainstream NAS Goals

🚩 Started with RL using RNN1 , Q-Learning2 to generate architecture

[1] Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, https://arxiv.org/abs/1611.01578

[2] Designing Neural Network Architectures using Reinforcement Learning, Bowen Baker et al., https://arxiv.org/abs/1611.02167

https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.02167

8

NAS Research & TinyML: Mainstream NAS Goals

🚩 Started with RL using RNN1 , Q-Learning2 to generate architecture
🚩 Next two big innovations were cellular search space3 and parameter sharing4

[3] Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph et al., https://arxiv.org/abs/1707.07012
[4] Efficient Neural Architecture Search via Parameter Sharing, Hieu Pham et al., https://arxiv.org/pdf/1802.03268.pdf

[1] Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, https://arxiv.org/abs/1611.01578
[2] Designing Neural Network Architectures using Reinforcement Learning, Bowen Baker et al., https://arxiv.org/abs/1611.02167

https://arxiv.org/abs/1707.07012
https://arxiv.org/pdf/1802.03268.pdf
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.02167

9

NAS Research & TinyML: Mainstream NAS Goals

🚩 Started with RL using RNN1 , Q-Learning2 to generate architecture
🚩 Next two big innovations were cellular search space3 and parameter sharing4

🚩 Meanwhile Evolutionary5, Bayesian NAS6 pushed the NAS optimization SOTA

[5] Regularized Evolution for Image Classifier Architecture Search,Esteban Real et al.
[6] Parallelised Bayesian Optimisation via Thompson Sampling, Kirthevasan Kandasamy et al.

[3] Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph et al., https://arxiv.org/abs/1707.07012
[4] Efficient Neural Architecture Search via Parameter Sharing, Hieu Pham et al., https://arxiv.org/pdf/1802.03268.pdf

[1] Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, https://arxiv.org/abs/1611.01578
[2] Designing Neural Network Architectures using Reinforcement Learning, Bowen Baker et al., https://arxiv.org/abs/1611.02167

https://arxiv.org/abs/1707.07012
https://arxiv.org/pdf/1802.03268.pdf
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.02167

10

NAS Research & TinyML: Mainstream NAS Goals

🚩 Started with RL using RNN1 , Q-Learning2 to generate architecture
🚩 Next two big innovations were cellular search space3 and parameter sharing4

🚩 Meanwhile Evolutionary5, Bayesian NAS6 pushed the NAS optimization SOTA
🚩 Next came the game changer DARTS7. It used earlier innovations.

[7] DARTS: Differentiable Architecture Search, Hanxiao Liu et al., https://arxiv.org/abs/1806.09055

[5] Regularized Evolution for Image Classifier Architecture Search,Esteban Real et al.
[6] Parallelised Bayesian Optimisation via Thompson Sampling, Kirthevasan Kandasamy et al.

[3] Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph et al., https://arxiv.org/abs/1707.07012
[4] Efficient Neural Architecture Search via Parameter Sharing, Hieu Pham et al., https://arxiv.org/pdf/1802.03268.pdf

[1] Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, https://arxiv.org/abs/1611.01578
[2] Designing Neural Network Architectures using Reinforcement Learning, Bowen Baker et al., https://arxiv.org/abs/1611.02167

https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1707.07012
https://arxiv.org/pdf/1802.03268.pdf
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.02167

11

NAS Research & TinyML: Mainstream NAS Goals

[7] DARTS: Differentiable Architecture Search, Hanxiao Liu et al., https://arxiv.org/abs/1806.09055

[5] Regularized Evolution for Image Classifier Architecture Search,Esteban Real et al.
[6] Parallelised Bayesian Optimisation via Thompson Sampling, Kirthevasan Kandasamy et al.

[3] Learning Transferable Architectures for Scalable Image Recognition, Barret Zoph et al., https://arxiv.org/abs/1707.07012
[4] Efficient Neural Architecture Search via Parameter Sharing, Hieu Pham et al., https://arxiv.org/pdf/1802.03268.pdf

[1] Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, https://arxiv.org/abs/1611.01578
[2] Designing Neural Network Architectures using Reinforcement Learning, Bowen Baker et al., https://arxiv.org/abs/1611.02167

🚩 Started with RL using RNN1 , Q-Learning2 to generate architecture
🚩 Next two big innovations were cellular search space3 and parameter sharing4

🚩 Meanwhile Evolutionary6, Bayesian NAS7 pushed the NAS optimization SOTA
🚩 Next came the game changer DARTS5. It used earlier innovations.
🚩 All paved the way for searching larger, more accurate nets much faster
🚩 I had to drop many deserving papers due to space constraints
🚩 This goal is not important for TinyML applications.
🚩 However, let's remember 2-MetaQNN, 3-NASNet, 4-ENAS, 5-DARTS, 6-AE, & 7-BO

https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1707.07012
https://arxiv.org/pdf/1802.03268.pdf
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.02167

12

NAS Research & TinyML: TinyML Goals

🚩 1000-layer DNN for MCUs ? - 20-30 layer DNN fits ; Global search space good enough; complex,
unexpected interconnect8 OK ; Training smaller models marginalizes many problems

[8] SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures, Cheng et al.

13

NAS Research & TinyML: TinyML Goals

🚩 1000-layer DNN for MCUs ? - 20-30 layer DNN fits ; Global search space good enough; complex,
unexpected interconnect8 OK ; Training smaller models marginalizes many problems

🚩 For TinyML model size, peak RAM usage, #MAC are highly important
🚩 Evaluation, measurement of KPIs, reward engineering are important

[8] SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures, Cheng et al.

14

NAS Research & TinyML: TinyML Goals

🚩 1000-layer DNN for MCUs ? - 20-30 layer DNN fits ; Global search space good enough; complex,
unexpected interconnect8 OK ; Training smaller models marginalizes many problems

🚩 For TinyML model size, peak RAM usage, #MAC are highly important
🚩 Evaluation, measurement of KPIs, reward engineering are important
🚩 MCUNet v19 & v210 are top class works - based on one shot NAS11, Search Space reduction highest

FLOPs within SRAM constraint - closely tied with TinyEngine IR for HW params

[10] MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, Ji Lin et al., https://arxiv.org/abs/2110.15352

[8] SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures, Cheng et al.
[9] MCUNet: Tiny Deep Learning on IoT Devices, Ji Lin et al., https://arxiv.org/pdf/2007.10319

[11] Understanding and Simplifying One-Shot Architecture Search, Bender et al., https://proceedings.mlr.press/v80/bender 18a

https://arxiv.org/abs/2110.15352
https://proceedings.mlr.press/v80/bender18a.html

15

NAS Research & TinyML: TinyML Goals

🚩 1000-layer DNN for MCUs ? - 20-30 layer DNN fits ; Global search space good enough; complex,
unexpected interconnect8 OK ; Training smaller models marginalizes many problems

🚩 For TinyML model size, peak RAM usage, #MAC are highly important
🚩 Evaluation, measurement of KPIs, reward engineering are important
🚩 MCUNet v19 & v210 are top class works - based on one shot NAS11, Search Space reduction highest

FLOPs within SRAM constraint - closely tied with TinyEngine IR for HW params
🚩 μ-NAS12 based on AE & BO, use working sets to approximate PMU & #MAC for latency

[12] µNAS: Constrained Neural Architecture Search for Microcontrollers, Edgar Liberis et al., https://arxiv.org/pdf/2010.14246

[10] MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, Ji Lin et al., https://arxiv.org/abs/2110.15352

[8] SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures, Cheng et al.
[9] MCUNet: Tiny Deep Learning on IoT Devices, Ji Lin et al., https://arxiv.org/pdf/2007.10319

[11] Understanding and Simplifying One-Shot Architecture Search, Bender et al., https://proceedings.mlr.press/v80/bender 18a

https://arxiv.org/abs/2110.15352
https://proceedings.mlr.press/v80/bender18a.html

16

NAS Research & TinyML: TinyML Goals

🚩 1000-layer DNN for MCUs ? - 20-30 layer DNN fits ; Global search space good enough; complex,
unexpected interconnect8 OK ; Training smaller models marginalizes many problems

🚩 For TinyML model size, peak RAM usage, #MAC are highly important
🚩 Evaluation, measurement of KPIs, reward engineering are important
🚩 MCUNet v19 & v210 are top class works - based on one shot NAS11, Search Space reduction highest

FLOPs within SRAM constraint - closely tied with TinyEngine IR for HW params
🚩 μ-NAS12 based on AE & BO, use working sets to approximate PMU & #MAC for latency
🚩 MicroNets13 most promising: DARTS + latency, memory, energy - all approximated by #FLOPS, MO

optimization DARTS Loss + ‘some regularizer’ - not clear: https://github.com/liyunsheng13/micronet
🚩 Moreover, this CVPR ‘20 paper showed that #MAC not good proxy for latency

[13] MicroNets: Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers, Colby
Banbury et al., https://arxiv.org/abs/2010.11267
[14] Latency-Aware Differentiable Neural Architecture Search, Yuhui Xu et al., https://arxiv.org/abs/2001.06392

[12] µNAS: Constrained Neural Architecture Search for Microcontrollers, Edgar Liberis et al., https://arxiv.org/pdf/2010.14246

[10] MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, Ji Lin et al., https://arxiv.org/abs/2110.15352
[11] Understanding and Simplifying One-Shot Architecture Search, Bender et al., https://proceedings.mlr.press/v80/bender 18a

https://github.com/liyunsheng13/micronet
https://arxiv.org/abs/2110.15352
https://proceedings.mlr.press/v80/bender18a.html

17

NAS Research & TinyML: Reward Engineering

🚩 Generally, for NAS reward is ACC - proven on benchmark datasets
🚩 TinyML objective: Pareto Optimal - one objective can’t be improved without making another worse
🚩 argmin α ∈ A { 1.0 − ACC(α), SIZE(α), PMU(α), LAT(α) }
🚩 Easiest method - treat all other objectives as constraints (comes from platform)

18

NAS Research & TinyML: Reward Engineering

🚩 Generally, for NAS reward is ACC - proven on benchmark datasets
🚩 TinyML objective: Pareto Optimal - one objective can’t be improved without making another worse
🚩 argmin α ∈ A { 1.0 − ACC(α), SIZE(α), PMU(α), LAT(α) }
🚩 Easiest method - treat all other objectives as constraints (comes from platform)
🚩 DPP-Net15 - ACC, #params, inference time, memory usage on actual hardware
🚩 MONAS16 - scalarization: R = α∗ACC − (1−α)∗ENERGY
🚩 μ-NAS12 - scalarization: Lt (α) = max(λt

1
 (1.0 − ACC(α)), λt

2
 PMU(α), λt

3
 SIZE(α), λt

4
 MACS(α))

[15] DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures, Jin-Dong Dong et al.,
https://arxiv.org/abs/1806.08198
[16] MONAS: Multi-Objective Neural Architecture Search using Reinforcement Learning, Chi-Hung Hsu et al.,
https://arxiv.org/abs/1806.10332

19

NAS Research & TinyML: Reward Engineering

🚩 Generally, for NAS reward is ACC - proven on benchmark datasets
🚩 TinyML objective: Pareto Optimal - one objective can’t be improved without making another worse
🚩 argmin α ∈ A { 1.0 − ACC(α), SIZE(α), PMU(α), LAT(α) }
🚩 Easiest method - treat all other objectives as constraints (comes from platform)
🚩 DPP-Net15 - ACC, #params, inference time, memory usage on actual hardware
🚩 MONAS16 - scalarization: R = α∗ACC − (1−α)∗ENERGY
🚩 μ-NAS12 - scalarization: Lt (α) = max(λt

1
 (1.0 − ACC(α)), λt

2
 PMU(α), λt

3
 SIZE(α), λt

4
 MACS(α))

🚩 MicroNets13 - using regularizer with DARTS: ΣK
k=1

 z
k
 |θ

k
| - how ?

[15] DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures, Jin-Dong Dong et al.,
https://arxiv.org/abs/1806.08198
[16] MONAS: Multi-Objective Neural Architecture Search using Reinforcement Learning, Chi-Hung Hsu et al.,
https://arxiv.org/abs/1806.10332

20

The Naive Neural Architecture Search: Model

✒ input images x ∈ ℝʰˣʷˣᶜ from an input space 𝑋 , and a set of labels x ∈ ℝ from an output space 𝑌
✒ Mapping η: 𝑋, 𝑌, 𝑃 → 𝒩(θ)

✒ 𝒩ᵐ(θₜ) ∘ … 𝒩²(θ₂) ∘ 𝒩¹(θ₁), where each layer implementation 𝒩ⁱ is parametrized by θᵢ, and

implements the functionality fᵢ

✒ y = fₜ(fₜ₋₁(…(f₁(x))…)), where each fᵢ can be an affine transform, non-linear transform , etc.

21

Naive NAS: Representing fₜ(fₜ₋₁(…(f₁(x))…))

1. Assign identifiers for each
component of the architecture

2. Let the encoding of a single layer be:
[<layer
type><input><output><kernel
size><stride><padding>…]

3. Let the architecture be a
concatenation of all such layers in
sequence:
[[<layer 1><param 1><param 2>…]
[<layer 2><param 1><param 2>…]
[<layer n><param 1><param 2>…]]

Operation Params Values

Conv2D Kernel size {1,3,...}

Out
Channel

{16,32,...}

In Channel {16,32...}

Stride {1,2}

Linear In {10,64,..}

Out {10,64,..}

Softmax

Operation Encoding

Conv2D 1

Linear 2

MaxPool2D 3

BN 4

Softmax 5

22

Algorithm 1: Naive NAS - Random Architecture Search

Initialize: Set max_layers, max_params, max_score, Layers,
Params, Values lists & empty architecture 𝖓

while ρ < max_score do

 for each l in Layers do

 for each h in Params [l] do

 2. l [h] ← random_choice (Values [h])

 3. Append l to architecture 𝖓

 4. Convert string architecture 𝖓 to 𝒩(θ)

 5. Train and evaluate 𝒩(θ) to get ACC, SIZ, RAM, MAC

 6. Convert ACC, SIZ, RAM, MAC into a weighted score ρ

for each l in Layers do

 for each h in Params

 random_apply(𝖓[l [h]], Values(h))

23

Enhancing Naive NAS

👎 Problems of Naive NAS
✖ Learns nothing, better architecture are NOT generated progressively
✖ We may get a good architecture, but no guarantee when

24

Enhancing Naive NAS

👎 Problems of Naive NAS
✖ Learns nothing, better architecture are NOT generated progressively
✖ We may get a good architecture, but no guarantee when

❓ How to make the search intelligent?
🔧 Consider and incorporate the feedback generated from the evaluation of the network
🔧 Should strive for generating progressively better architectures

25

Enhancing Naive NAS

👎 Problems of Naive NAS
✖ Learns nothing, better architecture are NOT generated progressively
✖ We may get a good architecture, but no guarantee when

❓ How to make the search intelligent?
🔧 Consider and incorporate the feedback generated from the evaluation of the network
🔧 Should strive for generating progressively better architectures

👂 Sometimes however, it works surprisingly well*

[*] Random Search and Reproducibility for Neural Architecture Search, Liam Li, Ameet Talwalkar,
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, PMLR, 2020

26

Enhancing Naive NAS

👎 Problems of Naive NAS
✖ Learns nothing, better architecture are NOT generated progressively
✖ We may get a good architecture, but no guarantee when

❓ How to make the search intelligent?
🔧 Consider and incorporate the feedback generated from the evaluation of the network
🔧 Should strive for generating progressively better architectures

👂 Sometimes however, it works surprisingly well*
👂 Making the search intelligent is just putting it into one of the existing formulae - not very difficult if we

know the formula & understand our problem

[*] Random Search and Reproducibility for Neural Architecture Search, Liam Li, Ameet Talwalkar,
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, PMLR, 2020

27

Reinforcement Learning Based NAS: Model

✒ We model the search (NAS agent) as Markov Decision Process (MDP)

✒ Agent starts with an initial architecture 𝖓 - its initial state

✒ States are associated with 𝖓, identified by a state vector

✒ From one state other states can be generated by modifying 𝖓

✒ Modifying 𝖓 is taking some action

✒ There can be several choices of action from a current state

✒ Why are we doing all these? We want the agent to choose best actions

28

RL NAS: How to Identify the Best Action?

✒ Agent aims to take actions, such that a reward value is maximized

✒ Reward represents the feedback that agent receives from environment

✒ Reward can be the validation accuracy

29

RL NAS: How to Identify the Best Action?

✒ Agent aims to take actions, such that a reward value is maximized

✒ Reward represents the feedback that agent receives from environment

✒ Reward can be the validation accuracy

✒ Reward can be immediate or in distant future for a state trajectory

30

RL NAS: Value of a State Transition

✒ Need to associate a value for transition from one state to other on an action

✒ Cumulative value of a state transition from Cₜ₁ to Cₜ₂, on an action α

31

RL NAS: Value of a State Transition

✒ Need to associate a value for transition from one state to other on an action

✒ Cumulative value of a state transition from Cₜ₁ to Cₜ₂, on an action α

✒ A greedy strategy considers the maximum expected reward starting from Cₜ₂

✒ V(∘) → action-value function and the individual V(Cₜ, α) → Q-values

32

Algorithm 2: RL NAS

Initialize: Set max_score, Layers, Params, Values lists, empty
architecture 𝖓, action set 𝓐 & state set 𝓒

while ρ < max_score do

 for each l in Layers do

 for each h in Params [l] do

 2. l [h] ← random_choice (Values [h])

 3. Append l to architecture 𝖓

 4. Update 𝓐 with α, 𝓒 with C𝖓

 4. Convert string architecture 𝖓 to 𝒩(θ)

 5. Train and evaluate 𝒩(θ) to get ACC, SIZ, RAM, MAC

 6. Convert ACC, SIZ, RAM, MAC into a weighted score ρ

 for each C𝖓 in 𝓒 do

 for each α in 𝓐 do

 7. Use C𝖓 , α , ρ, V(C𝖓
, α) to train 𝓜(θ)

EX
PL

O
R

E

EV
A

LU
AT

E

33

Initialize: Set max_layers, max_params, max_score, Layers, Params,
Values lists, empty architecture 𝖓, & action set 𝓐
while ρ < max_score do

 If random_value < ε do

 1. EXPLORE

 else do

 for each l in Layers do

 2. C𝖓 + 1
 ← 𝓜(θ) (C𝖓)

 3. l ← C𝖓 + 1

 4. Append l to architecture 𝖓

 7. EVALUATE

EX
PL

O
ITAlgorithm 2: RL NAS

34

Case Study: RL-NAS

Generating Tiny Deep Neural
Networks for ECG Classification on
MCU, Shalini Mukhopadhyay,
Swarnava Dey, Avik Ghose (TCS
Research), Pragya Singh (IIIT-D),
Pallab Dasgupta (IIT KGP) IEEE
Percom 2023

35

Case Study: RL-NAS
💓 RL based NAS (MetaQNN2) - ECG Atrial Fibrillation, Smoking episode, & Hand Gesture
💓 3000 iterations, 90 hours (A100), 20-layer, 225 KB model with SOTA F1 score for ECG-AF
💓 MO - ACC, SIZE, SRAM, #MAC: R = (W

a
ACC + ∑

i
 W exp(w

i
P

i
)) / ∑|W |

Multi-objective Convergence Clear Front of good models

Adafruit Feather
NRF52840
RAM Size : 256 kB
Flash Size : 1 MB
Target MACs : 16 M

Search Parameters

Generating Tiny Deep Neural Networks for ECG Classification on Micro-controllers, Mukhopadhyay et al., IEEE Percom 2023

36

Algorithm 3: EVO NAS

Initialize: Set max_score, max_pop, Layers, Params,
Values lists, empty architecture 𝖓, action set 𝓐 & state
set 𝓒

1. 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁 ← {𝜙}

for 1… max_score do

 2. 𝖓, 𝓐 ← EXPLORE

 3. ρ ← EVALUATE(𝖓)

 4. 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁.append(𝖓, 𝓐, ρ)

mut_rate ← 1.0

for 1… max_score do

 5. parent ← 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁.fittest()

 6. child ← mutate(parent, mut_rate)

(contd.)

for 1… max_score do

 7. parent ← 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁.fittest()

 8. Child, 𝓐 ← mutate(parent, mut_rate)

 9. ρ ← EVALUATE(child)

 10. 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁.append(child, 𝓐, ρ)

 11. 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁.remove_least_fits()

 12. Update mut_rate

13. final_architectures ← 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁.fittest()

37

Points to Note

✋ The main approach is sampling architectures randomly, evaluating, learning to sample better
architectures in an informed manner

✋ Sequentially building network

✋ Reward is completely decoupled from search

✋ Discrete choices for layers and params

38

DARTS: Differentiable NAS

Considers a fixed network a number of cells

Cells have nodes, connectivity (ops) is searched

39

DARTS: Differentiable NAS

Considers a fixed network a number of cells

Cells have nodes, connectivity (ops) is searched

¯o(i,j)(x)=∑
o∈𝓞

((exp(α(i,j)
o

) / (∑
o′∈𝓞exp(α(i,j)

o′)) * o(x)

x(j)=∑i<jo(i,j)(x(i)) x(j)=∑i<jo(i,j)(x(i)) x(j)=∑i<jo(i,j)(x(i))

(a) (b) (c)

training training

40

Algorithm 4: DARTS – Differentiable Architecture Search
Set max_layers, max_params, Create a mixed operation ̄o(i,j) parametrized by α(i,j) for
each edge (i, j)

while not converged do

1. Update architecture α by descending ∇αL
val

(w − ξ ∇w L
train

(w, α), α)

(ξ = 0 if using first-order approximation)

2. Update weights w by descending ∇wL
train

(w, α)

3. Discretize for the final architecture based on the learned α.

4. Re-train

minαL
val

(α, argmin
w

L
train

(α,w)) ≈ ∇αL
val

(w− ξ ∇w L
train

(α,w)

41

Take Home Points

✋ Gordon Moore is no more. Moore's law is supposed to reach saturation levels.
Still, it seems that the capacity of tiny devices will keep increasing in this decade

✋ Consequently, we have to search larger & complex networks for Edge devices

✋ Thus multi-objective, one-shot differential NAS is the research direction for TinyML

✋ Meanwhile, this tutorial showed that the existing multi-objective, sample-based NAS methods are
quite usable for the next few years

42

Thank You for bearing with me! 😊

Questions 👂

Copyright Notice

This multimedia file is copyright © 2023 by tinyML
Foundation. All rights reserved. It may not be duplicated
or distributed in any form without prior written approval.

tinyML® is a registered trademark of the tinyML
Foundation.

www.tinyml.org

Copyright Notice
This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the
opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does
not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the
authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding
the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org

	tinyML Talks template 230410 India.pdf
	Slide 1: “Neural Architecture Search for Tiny Devices”
	Slide 2
	Slide 3
	Slide 4
	Slide 5: tinyML EMEA Innovation Forum 2023 Connect, Unify, and Grow the tinyML EMEA Community June 26 - 28, 2023 https://www.tinyml.org/event/
	Slide 6: Reminders
	Slide 7: Swarnava Dey
	Slide 8
	Slide 9: Executive Strategic Partners
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Platinum Strategic Partners
	Slide 14
	Slide 15
	Slide 16: Gold Strategic Partners
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Copyright Notice
	Slide 27: Copyright Notice

